TERRY GOSS HIGH SCHOOL

P. BAG 802

TRIANGLE

Centre Number

Candidate Number

300

28 301. 2012

ZIMSEC 13

ZIMBABWE SCHOOL EXAMINATIONS COUNCIL

General Certificate of Education Advanced Level

PHYSICS

PAPER 2

Candidate Name

9188/2

JUNE 2012 SESSION

1 hour 15 minutes

Candidates answer on the question paper.

Additional materials:

Electronic calculator and/or Mathematical tables

TIME

1 hour 15 minutes

INSTRUCTIONS TO CANDIDATES

FOR EXAMINER'S USE

Write your name, Centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided on the question paper. For numerical answers, all working should be shown.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

This question paper consists of 12 printed pages.

Copyright: Zimbabwe School Examinations Council, J2012.

©ZIMSEC J2012

Turn over

Data

speed of light in free space,
permeability of free space,
permittivity of free space,
elementary charge,
the Planck constant,
unified atomic mass constant,
rest mass of electron,
rest mass of proton,
molar gas constant,
the Avogadro constant,
the Boltzmann constant,
gravitational constant,
acceleration of free fall,

 $c = 3.00 \times 10^{8} \text{ m s}^{-1}$ $\mu_{0} = 4\pi \times 10^{-7} \text{ H m}^{-1}$ $\epsilon_{0} = 8.85 \times 10^{-12} \text{ F m}^{-1}$ $\theta = 1.60 \times 10^{-19} \text{ C}$ $h = 6.63 \times 10^{-34} \text{ J s}$ $u = 1.66 \times 10^{-27} \text{ kg}$ $m_{e} = 9.11 \times 10^{-31} \text{ kg}$ $m_{p} = 1.67 \times 10^{-27} \text{ kg}$ $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$ $N_{A} = 6.02 \times 10^{23} \text{ mol}^{-1}$ $k = 1.38 \times 10^{-23} \text{ J K}^{-1}$

Formulae

uniformly accelerated motion,
$$s = ut + \frac{1}{2}at^2$$
$$v^2 = u^2 + 2as$$

work done on/by a gas,
$$W = p\Delta V$$
 gravitational potential,
$$\phi = -\frac{Gm}{r}$$

gravitational potential,
$$\varphi = -\frac{r}{r}$$

refractive index,
$$n = \frac{1}{\sin C}$$
 resistors in series,
$$R = R_1 + R_2 + \dots$$

resistors in parallel,
$$1/R = 1/R_1 + 1/R_2 + \dots$$

electric potential,
$$V = \frac{Q}{4\pi\epsilon_0 r}$$
 capacitors in series,
$$1/C = 1/C_1 + 1/C_2 + \dots$$

capacitors in parallel,
$$C = C_1 + C_2 + \dots$$

energy of charged capacitor,
$$W = \frac{1}{2}QV$$

alternating current/voltage,
$$x = x_0 \sin \omega t$$

hydrostatic pressure,
$$p = \rho gh$$

pressure of an ideal gas,
$$p = \frac{1}{3} \frac{Nm}{V} < c^2 >$$

radioactive decay,
$$x = x_0 \exp(-\lambda t)$$

decay constant,
$$\lambda = \frac{0.693}{t_{k}}$$

critical density of matter in the Universe,
$$\rho_0 = \frac{3H_0^2}{8\pi G}$$

equation of continuity,
$$Av = constant$$

Bernoulli equation (simplified),
$$p_1 + \frac{1}{2}\rho v_1^2 = p_2 + \frac{1}{2}\rho v_2^2$$

Stokes' law,
$$F = Ar\eta v$$

Reynolds' number,
$$R_{\rm e} = \frac{\rho v r}{\eta}$$

drag force in turbulent flow,
$$F = Br^2 \rho v^2$$

	Answer all questions.
(a)	Define velocity and state its SI unit.

1 (a) Define velocity and state its SI unit.

[2]

(b) A volume of gas is enclosed in an insulated container by a frictionless piston. A molecule of mass, m, moving with speed, u, collides head-on with a stationary piston as in Fig.1.1.

Fig.1.1

- (i) Write down an expression for the molecule's momentum change.
- (ii) State an assumption that you made.

[2]

(c) The piston is moved outwards with a velocity, ν , and collides with the gas molecule in (b). The molecule rebounces with a velocity, ν_1 , as in Fig. 1.2.

Fig.1.2

Hence deduce	the effect on the gas,	of this movement by the p
-		
force,		
the newton.		

2

(a)

(i)	Sketch a diagram showing all forces acting on the mass.
(1)	Section a diagram showing an forces acting on the mass.
10020	
(ii)	Calculate
	1. the resultant force, neglecting all frictional forces,
	non-ltout fouce
	resultant force =
	2. the acceleration of the body up the incline.

(c) Suggest why, in practice, the value of acceleration is less than that in **b** (ii) 2.

For Examiner's Use

[1]

Fig. 3.1 shows the variation of displacement, x, with time in seconds, t, for a simple pendulum.

Fig. 3.1

(a) Determine

(i) the period,

period = ____

(ii) the frequency of oscillation.

frequency=____

[2]

	n on Fig. 3.1, a graph of the variation of		For Examiner's
(i)	velocity with time and label this ν ,		Use
(ii)	acceleration with time and label this a.	[4]	
	be the energy changes that take place from the moment the lum is released until it completes half an oscillation.		
<i>S</i> ***	The second secon		
-			
		F2 T	
(i)	Explain the term damped oscillations.	[3]	
	Smith	Dates	
(ii)	Give a practical example where damping is useful and state the type of damping.	1)	
	example:		
	type of damping:	[3]	
Define			
(i)	stress,		
(ii)	strain,		

			[3]
)	lengt	ass of 12.0 kg is suspended from the ceiling by an aluminium wire of th 2.0 m and diameter 2.0 mm. If the Young Modulus of aluminium to 10.10 Pa, calculate	
	(i)	the tensile stress,	
	(ii)	tensile stress = the tensile strain,	
	(iii)	tensile strain = the extension,	
		extension =	
	(iv)	the elastic energy stored in the wire.	
	# #		
		elastic energy =	[7]

9188/2 J2012

		ath A
		[1]
(a)	Explain the term non-viscous fluid.	
		[2]
(b)	Air flows over the upper surface of the wings of an aeroplane at a speed of 120 ms ⁻¹ and past the lower surfaces of the wings at 105 ms ⁻¹ . The total wing area of the plane is 25 m ² and the density of air is 1.29 kgm ⁻¹	
	Calculate (i) the difference in pressure, Δp , between the upper and lower surfaces of the wings,	
		,
	(i) the difference in pressure, Δp , between the upper and lower	
	(i) the difference in pressure, Δp , between the upper and lower	
	(i) the difference in pressure, Δp , between the upper and lower surfaces of the wings,	
	(i) the difference in pressure, Δp , between the upper and lower surfaces of the wings, $\Delta p = \underline{\hspace{2cm}}$	

(c)	Explain why wings are shaped like an aerofoil.	
	*	[2
The w 5.0 x	Fork function of a metal is 2.0 eV . Monochromatic light of wavelength 10^{-7} m is used to illuminate the metal.	
(a)	Explain the term work function.	
		[1
(b)	Calculate	
	(i) the threshold wavelength, λ ,	
	$\lambda =$	
	(ii) the maximum kinetic energy of photoelectrons,	
	maximum kinetic energy =	

(iii) the stopping	notential			
(All) are stopping	potentiai.			
4				
	stopping potential =			
	11 01	Partie In the Car-Charaté		
			[6]	
Suggest the effects of	f using an intense light of wavele	1 77		
ruggest the criteris o.	i using an intense light of wavele	noth /5 nm		
		nigui 75 mii.		
		nigui 75 iiii.		
		argui 73 mm.		
		argui 73 mm.		
		argui 73 mm.	[2]	
		agui 73 mm.	[2]	
		agui 73 iiii.	[2]	
		argui 73 mm.	[2]	
		agui 73 iiii.	[2]	
		agui 73 iiii.	[2]	
		agui 73 mm.	[2]	
		agui 73 mm.	[2]	
		agui 73 iiii.	[2]	
		agui 73 mm.	[2]	