

ZIMBABWE SCHOOL EXAMINATIONS COUNCIL

General Certificate of Education Advanced Level

CHEMISTRY

PAPER 2 Theory

9189/2

NOVEMBER 2014 SESSION

1 hour 15 minutes

Candidates answer on the question paper.
Additional materials:

Data Booklet

Mathematical Tables and/or Calculator

TIME 1 hour 15 minutes

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided on the question paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

FOR EXAM	MINER'S USE
1	
2	55.15
3	
4	
5	
TOTAL	7. Sec. 19.

This question paper consists of 8 printed pages.

Copyright: Zimbabwe School Examinations Council, N2014.

©ZIMSEC N2014

[Turn over

	. (a)	Write an exp	pression for	K_p .			
		· .					- [1]
(3	(b)	Calculate th		f moles of N	2(g), H2(g) and NH3	_(g) at	
į ,		N ₂	5	ri,		ing Life	4 1
1%	Ŧ		28	75 37	3	No.	10
	5 · •	H ₂			•	9 19	
			®.	à			i I
			ı			+6	20 21
	95		1			2	ij
	Se Se	NH_3		• •	41	# #	5
			٠	Eγ			
		•	•		*		14 14
				, N ₁₂ ;			[:

the total pressure.

2	(a)	Define the term standard electrode potential.
		out potential.

8	

(b) The standard electrode potentials for two half cells are given below

$$S_2O_8^{2-} + 2e^- \longrightarrow 2SO_4^{2-}$$
 $E^{\theta} = +2.01 \text{ V}$
 $Ag^+ + e^- \longrightarrow Ag$ $E^{\theta} = +0.80 \text{ V}$

(i) State the three conditions for which the term standard refers.

1	D	¥	
1.		<u>#</u>	25
	1. ————————————————————————————————————		
	1. M Pa 4 4 4 5		

(ii) Write down a chemical equation for the overall reaction of the cell.

(iii) Calculate the cell potential, E^{θ} cell, for the reaction.

(iv) Sketch a diagram of the peroxodisulphate half cell.

[7]

(c)	conce	and explain, the effect, on the magnitude of Intrated ammonia to the Ag ⁺ /Ag half cell.	e cell of a	lading
	effect:	*		*
		•		
			:	<u> </u>
	explai	nation:		
.80			11 to 12	
			i, nj	
	. ——	A Company of the Comp	,	3.Y
				W.
			, =	[Total:
Sulpl	hur diox	ide is a poisonous gas with adverse environn Give any one source of sulphur dioxide.	nental effe	[Total:
		* •	nental effe	[Total:
		Give any one source of sulphur dioxide.		[Total:
	(i)	Give any one source of sulphur dioxide.		[Total:
	(i)	Give any one source of sulphur dioxide. State any two adverse effects of sulphur di 1. 2.		[Total:
	(i) (ii)	Give any one source of sulphur dioxide. State any two adverse effects of sulphur di	ioxide on t	[Total:
	(i) (ii)	Give any one source of sulphur dioxide. State any two adverse effects of sulphur di 1. 2.	ioxide on t	[Total:
	(ii) (iii) .	Give any one source of sulphur dioxide. State any two adverse effects of sulphur di 1. 2.	ioxide on t	[Total:

(b)	Sulphur dioxide	can be converted t	o sulphuric acid b	y the contact p	rocess.	The
	reaction is					7.

 $2\mathrm{SO}_{2(g)} + \mathrm{O}_{2(g)} \Longrightarrow 2\mathrm{SO}_{3(g)} \ \Delta \mathrm{H}^{\theta} = -96 \ \mathrm{KJmol}^{-1}.$

Give reasons for

(i)	cooling the reaction mixture,	
	•	10
		 ·····

(ii)	using a low pressure eve	n though high pressure	produces a high
	yield,	82	

(iii)	pumping an excess of air.	×

(iv)	using vanadium (V) oxide.	•		99	3
	g. T.		ě	N	
	¢.				
i.				1 -	

[4] [Total: 8]

<i>)</i> 100	dylanime can be prepared from	n chloromethane as shown	l,
	$CH_3Cl \xrightarrow{step I} A \longrightarrow$	step II CH-CH-NH.	•
(i)			
(-)		nditions for steps I and II.	¥
	step I: reagent		
E 120 ₁₂₁	condition(s)		
••••	step II: reagent		
arrait.	condition(s)		
(ii)	Draw the displayed struct		
	The y	arai formula of the interme	ediate A.
			•
	*		
. E		131.11	*
	*	•	# #
. 1	<u></u>	5.	e" •
_{js;} (i)	Dimethylamina		7
134 CA	Dimethylamine and ethyla formulae of the two isome	mine are isomers. Give th	e structura
S			10
		***************************************	20
	•	*	B
			e S
		, ·	• 9
(ii)	Evelsia to to	s	
(**)	Explain why dimethylamin	e is more basic than ethyla	mine.
5 - 5 - 5 ₋₄	·····	•	15
N 10 10 10 10 10 10 10 10 10 10 10 10 10			

	•	*	\$
		ı	

	* f		
⁰ Been	· · · · · · · · · · · · · · · · · · ·		%
	11	***) <u>%</u>

For Examiner's Use

			two industr	450B OI).	mogenai	ea nyaro	carbons.	
	a	1				12	ī	
		2.	300 1				• ,,	
		8.						-
	(ii)	Describe t use of hale	the environmogenated co	nental conse mpounds.	equences	of the un	controlle	d
							,	-
34		-	· · · · · · · · · · · · · · · · · · ·	V		i i	H	
		1.0	•	· ·				-
0 -	snows i	the structure	of fluoresca	mine a rea	gent for	المالم	• .	
amin	es.	the structure	of fluoresca	amine, a rea	gent for	the detect	ion of pr	imaı
amin	es.	the structure	of fluoresca	amine, a rea	gent for	the detect	ion of pr	imaı
amin	es.	the structure	of fluoresca	amine, a rea	gent for	the detect	ion of pr	imai
amin	es.	the structure	of fluoresca	Fig.5	gent for	the detect	ion of pr	imar
,				Fig.5				imai
,		fy any two fi	unctional gr	Fig.5	at in this	compoun	d.	imai
amin	Identi	fy any two fo		Fig.5 oups presen	at in this	compoun	d.	imai

reacts with

NaOH under reflux,

(i)

	NaBH ₄ ,	*	
	·		
	·	, ph	
×	*	€ Şu	
	. *	e	
		6	
(iii)	Br ₂ in the presence of FeBr ₃ ,	₹.	
	*	v	
		8	
	a.		
	w	** ** **	
	8		
(iv)	hot concentrated KMnO ₄ .	•	
	,	₽	
	•	. ,	
	•	•	
	₹.		
	6.		
Sugg	est explanations for the following obser	vations:	
-	est explanations for the following obser	\$ parts	
Sugg (i)	hexanedioic acid and 1,6-diaminohex	ane are formed when sulp	hu
-	•	ane are formed when sulp	hu
-	hexanedioic acid and 1,6-diaminohex	ane are formed when sulp	hui
-	hexanedioic acid and 1,6-diaminohex	ane are formed when sulp	hui
-	hexanedioic acid and 1,6-diaminohex	ane are formed when sulp	hui -
(i)	hexanedioic acid and 1,6-diaminohex	ane are formed when sulp	hui
-	hexanedioic acid and 1,6-diaminohex acid is added to a fabric made of nylo	ane are formed when sulp	hui -
(i)	hexanedioic acid and 1,6-diaminohex acid is added to a fabric made of nyloterylene is a better sweat absorber that	ane are formed when sulp	-
(i)	hexanedioic acid and 1,6-diaminohex acid is added to a fabric made of nyloterylene is a better sweat absorber that	ane are formed when sulp n-6,6	ohui
(i) (ii)	hexanedioic acid and 1,6-diaminohex acid is added to a fabric made of nyloterylene is a better sweat absorber that	ane are formed when sulp n-6,6	
(i)	hexanedioic acid and 1,6-diaminohex acid is added to a fabric made of nylo terylene is a better sweat absorber that commercial fertilisers use urea, NH ₂ 6	ane are formed when sulp n-6,6	_
(i) (ii)	hexanedioic acid and 1,6-diaminohex acid is added to a fabric made of nyloterylene is a better sweat absorber that	ane are formed when sulp n-6,6	_
(i) (ii)	hexanedioic acid and 1,6-diaminohex acid is added to a fabric made of nylo terylene is a better sweat absorber that commercial fertilisers use urea, NH ₂ 6	ane are formed when sulp n-6,6	
(i) (ii)	hexanedioic acid and 1,6-diaminohex acid is added to a fabric made of nylo terylene is a better sweat absorber that commercial fertilisers use urea, NH ₂ 6	ane are formed when sulp n-6,6	_
(i) (ii)	hexanedioic acid and 1,6-diaminohex acid is added to a fabric made of nylo terylene is a better sweat absorber that commercial fertilisers use urea, NH ₂ 6	ane are formed when sulp n-6,6	_