

ZIMBABWE SCHOOL EXAMINATIONS COUNCIL

General Certificate of Education Advanced Level

CHEMISTRY

9189/5

PAPER 5 Practical Test

NOVEMBER 2011 SESSION

1 hour 20 minutes

Candidates answer on the question paper. Additional materials:

As listed in Instructions to Supervisors

TIME 1 hour 20 minutes

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided on the question paper.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question. You are advised to show all working in calculations.

Use of a Data Booklet is unnecessary.

FOR EXAMINER'S USE		
1		
2		
TOTAL		

This question paper consists of 6 printed pages and 2 blank pages.

Copyright: Zimbabwe School Examinations Council, N2011.

©ZIMSEC N2011

[Turn over

You are required to find n, the number of moles of water of crystallisation in the salt $CuSO_4.nH_2O$ by the following method.

For Examiner's Use

[3]

FA1 is a solution of hydrated copper (II) sulphate of concentration 200 g/dm³.

FA2 is an aqueous solution of KI

FA3 is a 0.100 moldm⁻³ solution of sodium thiosulphate, Na₂S₂O₃.

Using a burette, place between 22.00 cm³ and 24.00 cm³ of **FA1** in a 250 cm³ graduated flask.

Record your readings in Table 1.1.

Make up the contents of the flask to the mark with distilled water and label this solution **FA4**.

Table 1.1 dilution of FA1.

Final burette reading/cm ³	
Initial burette reading/cm ³	
Volume of FA1 /cm ³	

Pipette 25.0 cm³ of **FA4** into a conical flask and add about 15 cm³ of **FA2**. This will produce an off white precipitate in a yellow-brown solution of iodine.

Titrate the iodine liberated with **FA3** until the colour of the solution fades to a pale yellow colour.

Add about 1 cm³ or three drops of starch indicator and titrate slowly until the blue-black colour of the starch-iodine complex just disappears leaving a permanent off-white solution.

Repeat the titration as many times as you consider necessary to obtain accurate results. Record your results in **Table 1.2**.

Final burette reading/cm ³	
Initial burette reading/cm ³	
Volume of FA3 used/cm ³	

[15]

Summary

(a) Calculate the number of moles of FA3 that reacted with the iodine liberated by FA4.

noles = _____[1]

(b) Given the following equations:

$$2Cu^{2+} + 4I^{-} \rightarrow 2CuI + I_{2}$$

 $2S_{2}O_{3}^{2-} + I_{2} \rightarrow 2I^{-} + S_{4}O_{6}^{2-}$

find the number of moles of Cu²⁺ in 25 cm³ of FA4.

moles = _____[2]

(c)	Calculate the number of moles of CuSO ₄ . n H ₂ O in 1 dm ³ solution of FA1 .		
	moles =	[2]	
(d)	Calculate the M _r of CuSO ₄ . nH ₂ O.		
	M_r =	[2]	
(e)	Find the value of n .		
	$A_r : [H = 1.0; O = 16; S = 32.0; Cu = 64.]$		

For Examiner's Use

ASSESSMENT OF PLANNING SKILLS

DO NOT CARRY OUT THE EXPERIMENT

When sodium thiosulphate, Na₂S₂O₃, solution reacts with acid, sulphur is slowly precipitated according to the following ionic equation.

$${\rm S_2O_{3(aq)}^{2-} + \ 2H_{(aq)}^+ \rightarrow S_{(s)} + \ SO_{2(g)} + \ \ H_2O_{(l)}}$$

Design an experiment to investigate the effect of concentration of (a) $Na_2S_2O_3$ on the rate of reaction.

You are provided with:

- stop watch
- measuring cylinder
- 250 cm³ beaker
- sheet of paper with a cross drawn on it 0.5 mol/dm³ sulphuric acid 0.1 mol/dm³ sodium thiosulphate

Present your plan as a sequence of numbered steps.

<u>Plan</u>

Using your results which you would have obtained, describe how you would determine the order of the reaction with respect to $Na_2S_2O_3$. **(b)**

For Examiner's Use

[3] [Total: 13]

BLANK PAGE