‘O’ LEVEL MATHS

QUESTIONS AND ANSWERS

VOLUME 1

TURN- UP COLLEGE

PUBLICATION STAFF

Publishing Director

Sam Madzingira

Copy Proof Reader

Curriculum Development Unit Zimbabwe

General Editor

C.K Mhuri

Contributors

Z. Mguni

Text Printers

Crystabell Mudzingwa
Publisher
Turn-Up College Zimbabwe
Office 28, N0. 131 Trade Centre Building
$13^{\text {th }} / 14^{\text {th }} \mathrm{AV}$ Bulawayo

[^0]
Foreword

I had the opportunity of discussing this book with several educationists, teachers and students when it was in the process of making, and I felt at once that it was likely to prove unusually useful. It gathers together a great deal of information which must otherwise be delved for in many books and all this is arranged judiciously and on practical lines. The authors' outlook might be described as one of liberal commonsense clarity, simplicity of expression, and examination - skills - focused. Our study packs are there to offer a canvas for Zimbabweans to showcase their best ideas to help transform the country into a knowledge- based society where citizens are free to express their creativity, knowledge and ingenuity. We have set challenging objectives, but we believe that only by striving to achieve the highest, can we elevate ourselves above the elements which tend to hold our country back. However, if your see anything where you feel we may have failed to deliver, and where we may have failed on issues such as content, depth, relevance and usability, please let us know by using the contact numbers
(09) 61226/61247, 0773247 358; or Box 2759 Byo; email at turnupcollege@yahoo.com. We are here to listen and improve.

In my days as a teacher and as a student I should have welcomed this book warmly because:
(i) It approaches the syllabus wholistically
(ii) It uses simplified expression
(iii) It has an in-depth coverage of content
(iv) It provides examination skills at the earliest stage of studying
(v) It provides local, international and commonplace examples; illustrations and case studies.
(vi) It provides intelligent questions and answers of the examination type on a chapter by chapter basis
(vii) Last but not least, it provides a clear platform for self-evaluation as one prepares for the final examinations.

I have no doubt that learners and educators would as well find this book to be the best. It is certainly a manual for success. Every one would find it worthy to have his own copy. I should not be surprised if the Turn-up College Study Pack became the best resource in school and out of school.

Sam Madzingira
Director

TABLE OF CONTENTS
CHAPTER PAGE
‘O’ LEVEL MATHS 1
Acknowledgements 7
CHAPTER 1 9
Arithmetic 9
CHAPTER 2. 29
NUMBER SYSTEMS, NUMBER BASES 29
CHAPTER 3 34
QUADRATIC EXPRESSIONS 34
CHAPTER 4. 44
INEQUALITIES 44
CHAPTER 5 49
VARIATION 49
CHAPTER 6 71
MATRICES 71
Simplify the following matrices 71
CHAPTER 7. 83
FORMULAE AND SUBSTITUTION 83
CHAPTER 8 93
CHAPTER 9 106
VECTORS 106
CHAPTER 10 116
FACTORISATION AND SIMPLIFICATION 116
CHAPTER 11. 125

Turn-up College "O" Level Mathematics Questions and answers
THE SINE RULE 125
CHAPTER 12 137
CONSTRUCTION AND LOG 137
CHAPTER 13 151
COSINE RULE 151

Acknowledgements

I would like to express my gratitude to members of teaching staff, whom through their effort, made the publication of this study pack a success and also not to be forgotten is my secretary Crystabell Mudzingwa who typed the manuscript. Zuma Mguni who provided the solutions to the questions in this module.

PREFACE

The Turn-up College Mathematics O-Level questions and answers study pack has been designed to primarily complement the content edition. Its main objective is to provide questions that give a student of O-Level Mathematics adequate revision for all topics covered by the syllabus. Raw memorizing of answers is not advised but students and educational practitioners should use this as an operational framework for enhanced mastery of content and examination skill practice. This book is therefore a worthwhile addition to the multiplicity to Mathematics materials already on the market.

CHAPTER 1

Arithmetic

Question 1

1. Simplify the following
(a) $\frac{1}{2}-\frac{3}{4}+\frac{2}{5}$
(b) $2 \frac{3}{4} \times \frac{2}{3} \div \frac{8}{12}$
c) $\left(\frac{2}{3}\right.$ of $\left.1 \frac{2}{7}\right) \div\left(\frac{2}{5}\right.$ of $\left.3 \frac{1}{3}\right)$

Solution

NB: When two or more operations are given in a problem, use
B - Brackets
O - Of
D - Division
M - Multiplication
A - Addition
S - Subtraction

M-Multiplication

$$
\text { (a) } \begin{aligned}
\frac{1}{2}-\frac{3}{4}+\frac{2}{5} & =\frac{1}{2}+\frac{2}{5}-\frac{3}{4} \\
& =\frac{10+8-15}{20} \\
& =\frac{18-15}{20} \\
& ==\frac{3}{20}
\end{aligned}
$$

b) $2 \frac{3}{4} \times \frac{2}{3} \div \frac{8}{12}$
c) $\left(\frac{2}{3}\right.$ of $\left.1 \frac{2}{7}\right) \div\left(\frac{2}{5}\right.$ of $\left.3 \frac{1}{3}\right)$
$=\frac{11}{4} \times \frac{2}{3} \times \frac{12}{8}$
$=\left(\frac{2}{3} \times \frac{9}{7}\right) \div\left(\frac{2}{5} \times \frac{10}{3}\right)$
$=\frac{11}{4}$
$=\frac{6}{7} \div \frac{4}{3}$
$=2 \frac{3}{4}$
$=\frac{6}{7} \times \frac{3}{4}=\frac{18}{28}=\frac{9}{14}$

Question 2

a) Express 0,475 as a fraction in its lowest terms
b) Express $\frac{2}{3}, \frac{4}{7}$ and $\frac{5}{9}$ as decimals, correct to 2 d.p and list the fractions in order of size with the smallest first.

Solution

a) $0,475=\frac{475}{1000}$

$$
\begin{aligned}
& =\frac{95}{200} \\
& =\frac{19}{40}
\end{aligned}
$$

b) $\frac{2}{3}=0,666=\underline{\underline{0,67}}$
$\frac{4}{7}=0,571=\underline{\underline{0,57}}$
$\frac{5}{9}=0,555=\underline{\underline{0,56}}$
Ascending order: $\frac{5}{9}, \frac{4}{7}, \frac{2}{3}$

Question 3

A novel was 504 pages and Linda had completed reading 308 of them. What fraction of the novel was left?

Solution

$$
\begin{aligned}
& \text { Pages left: } \\
& 504-308=196 \\
& =\frac{196}{504} \\
& =\frac{49}{126} \\
& =\frac{7}{\underline{18}}
\end{aligned}
$$

Question 4:

Simplify the following:
a) $\left(3 \frac{4}{7}-1 \frac{1}{2}\right) \div\left(5 \frac{3}{4}+2 \frac{6}{7}\right)$
b) $\frac{1 \frac{1}{5}+\frac{1}{4}}{3 \frac{1}{6}-2 \frac{1}{3}}$

Solution

a) $\left(3 \frac{4}{7}-1 \frac{1}{2}\right) \div\left(5 \frac{3}{4}+2 \frac{6}{7}\right)$
b) $\frac{1 \frac{1}{5}+\frac{1}{4}}{3 \frac{1}{6}-2 \frac{1}{3}}=\frac{\frac{6}{5}+\frac{1}{4}}{\frac{19}{6}-\frac{7}{3}}$
$=\left(\frac{25}{7}-\frac{3}{2}\right) \div\left(\frac{23}{4}+\frac{20}{7}\right)$
$=\frac{29}{20} \div \frac{5}{6}$
$=\left(\frac{50-21}{14}\right) \div\left(\frac{161+80}{28}\right)$
$=\frac{29}{14} \div \frac{241}{28}$
$=\frac{87}{50}$
$=\frac{29}{14} \times \frac{28}{241}$
$=\underline{\underline{58}}$

Question 5

a) How many pieces of wood each $6 \frac{2}{3} \mathrm{~m}$ long can be cut from a log, measuring $46 \frac{2}{3} \mathrm{~m}$ long?
b) Find $\frac{1}{8}$ of $7,24 \mathrm{~km}$ giving your answer in metres.

Solution

(a) $\frac{46 \frac{2}{3}}{6 \frac{2}{3}}=\frac{140}{3} \div \frac{20}{3}$

$$
=\frac{140}{3} \times \frac{3}{20}
$$

$$
=7 \text { pieces }
$$

b) $\quad \frac{1}{8}$ of $7,24 \mathrm{~km}=\frac{1}{8} \times 7,24$

$$
\begin{aligned}
& =0,905 \\
& =\underline{\mathbf{9 0 5 m}}
\end{aligned}
$$

Question 6

Calculate the value of the following
a) $\frac{3}{8}$ of $\$ 6$
b) $\quad \frac{2}{3}$ of $3,93 \mathrm{~m}$
c) $\frac{5}{12}$ of 3 hrs 36 min in hours and minutes

Solutions

a) $\$ 6$
$\frac{3}{8} \times \$ \frac{3}{6}$
$=\frac{9}{4}$
$=\$ 2,25$
c) $\quad \frac{5}{12}$ - of $3 \mathrm{hrs} 36 \mathrm{~min} \quad 3 \mathrm{hrs} 36 \mathrm{mins}=(3 \times 60+36)=96 \mathrm{mins}$

$$
\begin{aligned}
& =\frac{5}{12} \times 96 \mathrm{mins} \\
= & 60 \mathrm{mins} \\
= & \underline{1 \mathrm{hr} 30 \mathrm{mins}}
\end{aligned}
$$

Question 7

A college has an enrolment figure of 645 students $\frac{7}{12}$ of them are females. How many males are there?

Solution

$\frac{7}{12} \times 645$
$=301$
$=645-301$
There are $\underline{344}$ males.

Question 8

Simplify
(a) $\mathbf{0 , 3 4 - 5 , 2}+\mathbf{6 2 , 7}$
(b) $0,22+3,21 \times 5,2$
(c) $0,65:-13 \times 0,02$

Solution
a) $0,34:-5,2+62,7$
$0,34-5,2+62,7$
$0,34+62,7-5,2$
63,04-5,2
57,84
b) $0,22+3,21 \times 5,2$
$0,22+(3,21 \times 5,2)$
c) $\quad(0,65:-13) \times 0,02$
$=0,22+16,692$
$0,05 \times 0,02$
$=\quad \underline{16,912}$
$\underline{0,001}$

Question 9:

Change the following fractions into decimals
a) $\frac{13}{20}$
b) $\frac{1}{8}$
c) $\frac{11}{50}$
d) $\frac{3}{40}$
a) $\frac{13}{20}=\underline{0,65} \quad$ b) $\frac{1}{8}=\underline{0,125}$
c) $\frac{11}{50}=\underline{0,22}$

50

Turn-up College "O" Level Mathematics Questions and answers
d) $\frac{3}{40}=\underline{0,075}$

Question 10

Change the following decimals into fractions giving your answer in its lowest terms.
a) 0,35
b) 0,15
c) 0,26
d) 0,0025

Solution
a) $0,35=\frac{35}{100}$
b) $0,15=\frac{3^{3}}{1 \underset{20}{10 \theta}}$
$=\frac{7}{20}$
$\frac{3}{20}$
c) $0,26=\frac{2^{13}}{10}$
$=\frac{13}{50}$
d) $0,0025=\frac{25}{10000}$
$=\frac{5}{200}$

Question 11
Evaluate the Following
a) $8,5 \div 5$
b) $34 \div 0,04$
c) $20 \div 0,02$
d) $0,042 \div 0,7$
e) $0,125 \div 0,025$

Solution

a) $\frac{8,5 \times 10}{5 \times 10}=\frac{85}{100}=0,85$
b) $\underline{34} \times 100=\frac{3400}{4}$

$$
0,04 \times 100
$$

$$
=\quad \underline{850}
$$

c) $\frac{20 \times 100}{0.02 \times 100}=\frac{200}{2}=1000$
d) $\frac{0,042 \times 1000}{0,7 \times 1000}=\frac{42}{700}$

$$
\begin{array}{r}
=\frac{6}{100} \\
=\underline{0,06}
\end{array}
$$

e) $\frac{0,125 \times 1000}{0,025 \times 1000}=\frac{125}{25}=5$

Question 12

An Ice Cream costs $\$ 2$, 40. Jane has $\$ 40$ and buys as many ice creams as possible. Find
a) The number of Ice creams she buys
b) The change that she receives

Solution

a) $=\frac{40 \times 100}{2,40 \times 100}$

$$
\begin{gathered}
=\frac{4000}{240} \\
=16,66
\end{gathered}
$$

She buys 16 Ice Creams

b) $\$ 2,40$

$$
\begin{array}{r}
\times 16 \\
\hline 2400 \\
+1400 \\
\underline{38,40}
\end{array}=\$ 38,40
$$

$\$ 40-\quad \$ 38,40=\$ 1.60$

Question 13

Turn-up College "O" Level Mathematics Questions and answers

By how much is the product of 0,25 and 55 more than 12 ?

Solution

$0,25 \times 55$

0, 25
$\begin{array}{r}05 \\ \times 5 \\ \hline\end{array}$
1250
$+125$
13,75
13,75-12 $=1,75$
It is more by 1,75

Question 14

How many pencils can Sekai buy at $\$ 0,65$ each for $\$ 14,95$. If she sells them at $\$ 0,80$ each, find her total profit.

Solution

$$
\frac{\$ 14,95}{0,65} \times \frac{100}{100}=\frac{1495}{6 \not z_{13}}
$$

She can buy 23 pencils.
\$0,80
503
$\times 1600$
$+240$
$18,40=\$ 18,40$
\$18,40

- \$14, 95
\$3, 45
Sekai's total profit is $\quad \$ 3,45$

Question 15

A pack of A4 exercise books weighs10,98kg. If each exercise book weighs 54, 99 , how many exercise books are there?

Solution
First change kg to grammes $10,98 \mathrm{~kg} \times 1000=10980 \mathrm{~g}$
$\frac{10980}{54,9} \times \frac{10}{10}$

$$
=\frac{109800}{549}
$$

$=200$ Exercise Books

Question 16

Express
a) $\quad 1269$ to $3 \mathrm{~s} . \mathrm{f}$
b) 3,017 to 3 s.f
c) 0,032016 to 3s.f

Solution

a) $1269=1270$ to 3.s.f
b) $3,017=3,02$ to 3 s.f
c) $0,0032016=0,0320$ to $3 \mathrm{~s} . \mathrm{f}$

Question 17

Express the following numbers to two significant figures
a) 3269
b) 4,027
c) 0,065037
a) $3269=3300$ to 2 s.f
b) $4,027=4,0$ to 2 s.f
c) $0,065037=0,065$ to 2 s.f

Question 18

Express the following to 1 significant figure
a) 6289
b) 273
c) 0,058
d) 0,0062

Solution
a) $6289=\underline{6000}$ to 1 s.f
b) $273=\quad \underline{300}$ tols.f
c) $0,058=\underline{0,06}$ to I s.f
d) $0,0062=\underline{0,006}$ to I s.f

Question 19

Turn-up College "O" Level Mathematics Questions and answers

Give the following correct to 3 decimal places.
a) 13,6731
b) 0,2869
c) 0,0486

Solutions
a) $13,6731=13,673$ to 3d.p
b) $0,2869=0,287$ to 3.d.p
c) $0,0486=0,049$ to 3.d.p

Question 20

Express 0,006287
to:
a) 3. s.f
b) 3 d.p
c) $2 \mathrm{~s} . \mathrm{f}$
d) 2 d.p

Solution
a) $0,006287=0,00629$ to $3 \mathrm{~s} . \mathrm{f}$
b) $0,006287=0,006$ to $3 \mathrm{~d} \cdot \mathrm{p}$
c) $0,006287=0,0063$ to 2.s.f
d) $0,006287=0,01$ to 2 d.p

Question 21

State the number of significant figures in each of the following
a) $0,029 \mathrm{~cm}$
b) $\quad 8,04 \mathrm{~g}$
c) $\quad 28000 \mathrm{~km}$

Solution

a) $0,029 \mathrm{~cm}=2$ s.f
b) $8,04 \mathrm{~g}=3$ s.f
c) $28000 \mathrm{~km}=2$ s.f

Question 22

Turn-up College "O" Level Mathematics Questions and answers

Find the H.C.F of the following
a) 36,54 and 60
b) 216 and 168

Solution

NB: H.C.F is the product of the common prime factors
a) $36=2 \times 2 \times 3 \times 3$
$54=2 \times 3 \times 3 \times 3$
$60=2 \times 2 \times 3 \times 5$
H.C.F $=2 \times 3=6$
$=6$
b) $216=2 \times 2 \times 2 \times 3 \times 3 \times 3$
$168=\quad 2 \times 2 \times 2 \times 3 \times 7$
H.C.F $=2 \times 2 \times 2 \times 3$
$=\quad \underline{24}$

Question 23

What is the H.C.F of 324,432 and 540
Solution

$$
\begin{array}{rll}
324 & = & 2 \times 2 \times 3 \times 3 \times 3 \times 3 \\
432 & = & 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \\
& \\
\text { H.C.F } & = & 2 \times 2 \times 3 \times 3 \times 3 \\
& = & \underline{108}
\end{array}
$$

Question 24

Find the L.C.M of the following
a) 12,15 and 18
b) 36,45 and 60

Solution

NB: To Find the L.C.M, you have to express each number as a product of its prime factors. Also the highest power of each prime factor must be in the L.C.M.

a) | 12 | $=2 \times 2 \times 3$ |
| ---: | :--- |
| 15 | $=$ |
| 18 | $=2 \times 5$ |
| 18 | $2 \times 3 \times 3$ |

L.C.M $=2^{2} \times 3^{2} \times 5$
$=\quad \underline{180}$
b) $36=2 \times 2 \times 3 \times 3$
$45=3 \times 3 \times 5$
$60=2 \times 2 \times 3 \times 5$
L.C.M $=2^{2} \times 3^{2} \times 5$
$=\quad \underline{180}$

Question 25

Write the following in standard form
a) 650
b) 37000

Solution

Any positive number can be expressed in the form $a \times 10^{n}$ where n is a positive or negative integer and a any number between 1 and 10
$1 \leq a<10$
a) $650=6,5 \times 100$
$=6,5 \times 10^{2}$
b) $3700=3,7 \times 1000$
$=\quad 3,7 \times 10^{3}$

Question 26

Express the following numbers in standard form
a) 5000
b) 708000
a) $5000=5,0 \times 1000$
$=5 \times 10^{3}$
b) $708000=7,08 \times 100000$
$=\quad 7,08 \times 10^{5}$
Question 27
Write the following numbers in the form $\mathrm{a} \times 10 \mathrm{n}$ where $1 \leq \mathrm{a}<10$ and n is a positive or negative integer.
a) 76,25
b) 0,0062

Solution
a) $76,25=7,625 \times 10$

Turn-up College "O" Level Mathematics Questions and answers

$$
=\quad 7,625 \times 10
$$

b) $0,0062=\frac{6,2}{1000}=\frac{6,2}{10^{3}}$

$$
=\quad 6,2 \times 10^{-3}
$$

Question 28

Express the following numbers in standard form
a) 0,526
b) 0,00309

Solution

a) $0,526=\frac{5.26}{10}=\frac{5.26}{10}$

$$
=\quad 5,26 \times \frac{1}{10^{1}}
$$

$$
=\quad 5,26 \times 10^{-1}
$$

b) $0,00309=\frac{3.09}{1000}$

$$
=\frac{3.09}{103}
$$

$$
=\frac{3,09}{10^{3}}
$$

$$
=\quad 3,09 \times 10^{-3}
$$

Question 29

Evaluate the following giving your answers in standard form
Turn-up College "O" Level Mathematics Questions and answers
a) $\left(4,4 \times 10^{6}\right) \div\left(2 \times 10^{2}\right)$
b) $\left(3,5 \times 10^{7}\right) \div\left(5 \times 10^{4}\right)$

Solution
a) $\frac{4.4 \times 10^{6}}{2 \times 10^{2}}$
$=\frac{4.4}{2} \times \frac{10^{6}}{10^{2}}$
$=\quad 2,2 \times 10^{4}$
b) $\frac{3.5 \times 10^{7}}{5 \times 10^{4}}=\frac{3.5}{5} \times \frac{10^{7}}{10^{4}}$
$=\quad 0,7 \times 10^{3}$
$=7 \times 10^{-1} \times 10^{3}$
$=\quad 7 \times 10^{2}$

Question 30

Simplify, leaving your answer in standard form
a) $\left(9,6 \times 10^{5}\right) \div\left(3 \times 10^{3}\right)$
b) $\quad\left(1,2 \times 10^{9}\right) \div\left(3 \times \times 10^{5}\right)$

Solution

a) $\frac{9,6}{3} \times \frac{10^{5}}{10^{3}}=\frac{9,6}{3} \times \frac{10^{5}}{10^{3}}$
$=\quad 3,2 \times 10^{2}$
b) $\left(1,2 \times 10^{9}\right) \div\left(3 \times 10^{5}\right)$

$$
\begin{aligned}
& \frac{1.2 \times 10^{9}}{3 \times 105}=\frac{1.2}{3} \times \frac{10^{9}}{10^{5}} \\
& =\quad 0,4 \times 10^{4}
\end{aligned}
$$

Turn-up College "O" Level Mathematics Questions and answers

$$
\begin{array}{ll}
= & 4 \times 10^{-1} \times 10^{4} \\
= & 4 \times 10^{3}
\end{array}
$$

Question 31

Evaluate giving your answer in standard form
a) $\left(6 \times 10^{-4}\right) \times\left(2 \times 10^{2}\right)$
b) $\left(5 \times 10^{-1}\right) \times\left(3 \times 10^{-4}\right)$

Solution

a) $\left(6 \times 10^{-4}\right) \times\left(2 \times 10^{-2}\right)$
$=\quad(6 \times 2) \times\left(10^{-4} \times 10^{-2}\right)$
$=\quad 12 \times 10^{-6}$
$=\quad 1,2 \times 10^{1} \times 10^{-6}$
$=\quad \underline{1,2} \times \underline{10}^{-5}$
b) $\quad\left(5 \times 10^{-1}\right) \times\left(3 \times 10^{-4}\right)$
$=(5 \times 3) \times\left(10^{-1} \times 10^{-4}\right)$
$=\quad 15 \times 10^{5}$
$=\quad 1,5 \times 10^{1} \times 10^{-5}$
$=1,5 \times 10^{-4}$

Question 32

Express the first quantity as a percentage of the second
a) $\quad \$ 26$ of $\$ 200$
b) 1,2 litres of 6 litres
c) $\quad 45$ cents of $\$ 3$

Solution
a) $\frac{\$ 26}{\$ 200} \times \frac{100 \%}{1}$
c) $\frac{45}{300} \times \frac{100 \%}{1}$
$=\quad 13 \%$
$\frac{1200}{6000} \times \frac{100 \%}{1}=15 \%$

Turn-up College "O" Level Mathematics Questions and answers
$=\quad 12 \%$
b) $\frac{1,2}{6} \times 100 \%=\frac{12}{60} \times 100 \%=\mathbf{2 0 \%}$

Question 33

25% of a sum of money is $\$ 45$. Find the sum of money

Solution
$25 \%=\$ 45$
$100 \%=$ more
$=\frac{100}{25} \times 45$
$=180$
The sum of money $=\$ 135+\$ 45 \quad=\quad \$ \underline{180}$

Question 34

What is 34% of R 45 ?
Solution
34
$100 \times \mathrm{R} 45$
20
10
$1,7 \times 9=15,3$
$=\quad \mathrm{R} 15,30$

Question 35

Find the value of the following correct to the nearest cent.
a) 9% of $\$ 6,40$
b) 13% of $\$ 8,20$

Turn-up College "O" Level Mathematics Questions and answers
a) $\frac{9}{100} \times 640 c$
$=\frac{9 \times 320}{50}=\frac{288}{50}$
$=5,76 \mathrm{c}$
$=\$ \underline{0,58}$
b) $\frac{13}{100} \times \underline{\$ 8,20}$

$$
\begin{aligned}
& =0,13 \times 8,20 \\
& =1,066 \\
& =\$ 1,07
\end{aligned}
$$

Question 36

Express the following percentages as fractions in their lowest form.
a) 20%
b) 55%

Solution
a) $\frac{20}{100}=\frac{1}{5}$
b) $55 \%=\frac{55}{100}=\frac{11}{20}$

Question 37

Express the following as Decimals
a) 10%
b) 3%
c) $\quad 66 \frac{2}{3}$

Solution
a) $10 \%=\frac{10}{100}=0,1$

$$
\begin{aligned}
& =\quad \underline{0,1} \\
& \text { b) } 3 \%=\frac{3^{\circ}}{100} \\
& =0,03 \\
& \text { c) } 66 \frac{2}{3}=\frac{200 \%}{3} \\
& \underline{200}:-\quad \frac{100 \%}{1} \\
& =\quad \underline{200} \quad \mathrm{x} \quad \frac{1}{100} \\
& =\quad 0,6666 \ldots \\
& =\quad \underline{0,67} \text { to } 2 . \mathrm{d} . \mathrm{p}
\end{aligned}
$$

Question 38

A man buys a TV set at $\$ 3200$. He pays a 15% deposit. How much is the deposit?
Solution
$\frac{15}{100} \times \frac{3200}{1}$
$15 \times 32=480$
The deposit is $\$ 480$

Question 39

A vendor reduced all his prices by 12%. What will be the price of a blanket originally marked at $\$ 40$?

Solution
$\frac{12}{100} \times \$ 40$
$\frac{24}{5}=4,8$
\$4,80
Turn-up College "O" Level Mathematics Questions and answers
$\$ 40-\$ 4,80=\$ 35,20$
The new price $=\quad \$ 35,20$

Question 40

The price of a suit is $\$ 320$
4 months later it is $\$ 335$. What was the percentage increase?
Solution
NB: Percentage increase/Decrease is calculated using the formular:-
Increase/ Decrease $\times 100 \%$
Original value

Increase \begin{tabular}{l}
$=$

$=$

$\$ 335-\$ 320$

$\frac{15}{320} \times 15$
\end{tabular}

$\frac{15 \times 10}{32}$
$=\quad 4,6875$
$=\quad 4,70 \%$

CHAPTER 2

Number systems, Number Bases

Convert the following numbers into the bases shown on:
a) 57 to base 5
b) 39 to base 2

10

Solution

1a)

5	57
5	11 r 2
5	2 r 1
	0 r 2

$\therefore 57_{10}=212_{5}$

2	39
2	19 r 1
2	9 r 1
2	4 r 1
2	2 r 0
2	1 r 0
	0 r 1

$\therefore 39_{10}=100111_{2}$
2. Convert the following numbers into base 10
a) 2103_{5}
b) $\quad 101102^{2}$
c) $\quad 143_{5}$

Turn-up College "O" Level Mathematics Questions and answers

Solution

a) $2 \times 5^{3}+1 \times 5^{2}+0 \times 5^{1}+3 \times 5^{0}$
$=\quad 2 \times 125+1 \times 25+0 \times 5+3 \times 1$
$=\quad 250+25+3$
$=\quad 278$
b) $\quad 10110_{2}$
$1 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}$
$=\quad 1 \times 16+0 \times 8+1 \times 4+1 \times 2+0 \times 1$
$=16+4+2$
$=\quad 22_{10}$
c) $\quad 1 \times 5^{2}+34 \times 5^{1}+3 \times 5^{0}$
$=\quad 1 \times 25+20+3$
$=\quad 25+23$
$=\quad 48_{10}$
3. Evaluate the following, giving your answers in base 2.
a) $\begin{array}{ll}1011_{2}+111_{2} & \text { (b)) } 101_{2}+11_{2}\end{array}$

Solution

When adding in any base, remember to 'carry', borrow' or add equality' in the base
a)

1011_{2}
$+\quad 111_{2}$
$10010_{2}=10010_{2}$

b)

101_{2}
$+\quad 11_{2}$
$1000_{2}=1000_{2}$

NB: when adding $1+1=2$ then you divide by 2 (The Base) you get 1 r 0 , you now write the remainder and carry the 1 .
4. Given that:
$\xi=\{2 ; 3 ; 4 ; 5 ; 6 ; 8 ; 9 ; \ldots, 16\}$
$\mathrm{A}=\{x: x$ is a perfect square $\}$
Turn-up College "O" Level Mathematics Questions and answers

$$
\begin{aligned}
& \mathrm{B}=\quad\{x: x \text { is a factor of } 36\} \\
& \mathrm{C}=\quad\{x: x \text { is a prime number }\}
\end{aligned}
$$

a) List the members of
i) $\quad \mathrm{A}$ (ii) $\mathrm{A} \cap \mathrm{B}$
b) $\quad \mathrm{n}\left(\mathrm{C}^{1}\right)$

Solution

Note: You must list the member of the three sets first
$\mathrm{A}=\{4 ; 9 ; 16\}$
$\mathrm{B}=\{2 ; 3 ; 4 ; 6 ; 9 ; 12\}$
$\mathrm{C}=\{2 ; 3 ; 5 ; 7 ; 11 ; 13\}$
a) i) $\quad \mathrm{A}=\{4 ; 9 ; 16\}$
ii) $\mathrm{A} \cap \mathrm{B}=\{4 ; 9\}$
b) $C^{\prime}=\quad\{4 ; 6 ; 8 ; 9 ; 10 ; 12 ; 14 ; 15 ; 16\}$

$$
\therefore \mathrm{n}\left(C^{\prime}\right)=9
$$

5)a) Solve the inequality $2 x+5 \geq 4$
b) Write down the smallest value of x given that
i) $\quad x$ is an integer
ii) $\quad x$ is a natural number
iii) $\quad x$ is a Prime number
iv) $\quad x$ is a rational number
v) $\quad x$ is a real number

Solution

5a) $2 x+5 \geq 4$
$2 x \geq 4-5$
$2 x \geq-1$
$x \geq-1 / 2$
B (i) 0
Turn-up College "O" Level Mathematics Questions and answers
ii) 1
iii) 2
iv) $-1 / 2$
v) $-1 / 2$
6) Find the prime factors of 70, 42 and 105 and state their HCF and L CM.

Solution

3	105	
5	35	
7	7	
	1	$105=3 \times 5 \times 7$
70	=	$2 \times 5 \times 7$
42	=	$2 \times 3 \times 7$
105	=	$3 \times 5 \times 7$
:-		$=7$
		$=2 \times 3 \times$

7a) Find the value of $\left(1 \frac{1}{2}+\frac{2}{3}\right) \times 1 \frac{1}{5}$
Giving your answer as a fraction in its lowest terms
b) Evaluate 5,4 + $4 \times 0,3$
c) Calculate 6% of $£ 5450$
d) Express 42 cm as a percentage of $1,05 \mathrm{~m}$.

Turn-up College "O" Level Mathematics Questions and answers

Solution

Apply the BOMDAS method
1 B- Brackets first
2. ODM ——Of Multiplication, Division next
3. AS - addition \& Subtraction Last
a) $\left(1 \frac{1}{2}+\frac{2}{3}\right) \times 1 \frac{1}{5}$

$$
=\left(\frac{3}{2}+\frac{2}{3}\right) \times \frac{6}{5}
$$

$$
=\frac{9+4}{6} \times \frac{6}{5}
$$

$$
=\frac{13}{6} \times \frac{6}{5}
$$

$$
=\frac{13}{5}
$$

$$
=2 \frac{3}{5}
$$

b) $\frac{6}{100} \times 5450$

$$
=£ 327
$$

c) $5,4+4 \times 0,3$

$$
5,4+1,2
$$

$=\quad \underline{6,6}$
d) $\quad \begin{aligned} & \frac{42}{105} \times 100 \%\end{aligned}$
$=\quad \underline{40 \%}$

CHAPTER 3

Quadratic Expressions

1. Expand the Following

a) $(2 a-5)(a+7)$
b) $(3 x-7)(5 x+1)-(x+2)(x+5)$

Solution
(2a-5) (a+7)
$2 \mathrm{a}(\mathrm{a}+7)-5)(\mathrm{a}+7)$
$2 a^{2}+14 a-5 a-35$
$\underline{2 a^{2}+9 a-35}$
b) $\quad(3 x-7)-(x+2)(x+5)$
$=3 x(5 x+1)-7(5 x+1)(\mathrm{i})$
$=15 x^{2}+3 x-35 x-7$
$=\quad 15 x^{2}-32 x-7$
And $(\mathrm{x}+2)(\mathrm{x}+5)=x(x+5)+2(x+5)$

$$
=x^{2}+5 x+2 x+10
$$

$$
=x^{2}+7 x+10 \text { (ii) }
$$

$:-\quad\left(15 x^{2}-32 x-7\right)-\left(x^{2}+7 x+10\right)$
$15 x^{2}-x^{2}-32 x-7-x-7-10$
$14 x^{2}-39 x-17$
2. Fractorise the following
a) a $x-\mathrm{b} x+$ by- any
b) $\quad x^{2}-x-72$
c) $4 x^{2}-9 y^{2}$

Solution

$$
\begin{array}{ll}
\text { a) } & \mathrm{a} x-\mathrm{b} x+\mathrm{by}-\mathrm{ay} \\
= & \mathrm{a} x-\mathrm{ay}+\mathrm{by}-\mathrm{b} x \\
= & \mathrm{a}(x-\mathrm{y})+\mathrm{b}(\mathrm{y}-x) \\
= & \mathrm{a}(x-\mathrm{y})-\mathrm{b}(x-\mathrm{y}) \\
= & (\mathrm{a}-\mathrm{b})(x-\mathrm{y})
\end{array}
$$

b) $x^{2}-x-72=(x \underline{-9})(x+\mathbf{8})$
c) $4 x^{2}-9 y^{2}$

$$
\begin{aligned}
\text { Note:- } \mathrm{a}^{2}-\mathrm{b}^{2} & =(\mathrm{a}-\mathrm{b})(\mathrm{a}+\mathrm{b}) \\
504 x^{2}-9 \mathrm{y}^{2} & =(2 x)^{2}-(3 \mathrm{y})^{2} \\
& =(2 x-3 \mathrm{y})(2 x+3 \mathrm{y})
\end{aligned}
$$

3. Solve the following quadratic equations
a) $\quad x^{2}-3 x-10=0$
b) $\quad 8 x^{2}-2 x-15=0$
c) $7 x^{2}-3 x=0$

Solution

a) $x^{2}-3 x-10=0$

$$
(x-5)(x+2)=0
$$

Either $\mathrm{x}-5=0$ or $x+2=0$

$$
:-\quad x=5 \text { or }-2
$$

b) $8 x^{2}-2 x-15=0$

$$
(2 x-3)(4 x+5)=0
$$

either $2 x-3=0$ or $4 x+5=0$

$$
\begin{aligned}
& \therefore \quad \frac{2 x}{2}=\frac{3}{2} \text { or } \frac{4 x}{4}=-\frac{-5}{4} \\
& \therefore \quad x=1 \frac{1}{2} \text { or }-1 \frac{1}{4}
\end{aligned}
$$

c) $7 x^{2}-3 x=0$

$$
x(7 x-3)=0
$$

either $x=0$ or $7 x-3=0$

$$
\begin{aligned}
& =x=0 \text { or } \frac{7}{7} x=\frac{3}{7} \\
& \therefore \quad x=0 \text { or } \frac{3}{7}
\end{aligned}
$$

Question 4 Factorise the following
a) $\quad 2 \mathrm{a} x-6 \mathrm{a}+\mathrm{b} x-3 \mathrm{~b}$
b) $\quad 4-9 \mathrm{~m}^{2}$

Turn-up College "O" Level Mathematics Questions and answers

Solution

a) $\quad 2 \mathrm{a} x-6 \mathrm{a}+\mathrm{b} x-3 \mathrm{~b}$
$2 \mathrm{a}(x-3)+\mathrm{b}(x-3) 1$
$1(2 \mathrm{a}+\mathrm{b})(x-3)$
b) $\quad 4-9 m^{2}$

Note: Difference of two squares

$$
\begin{aligned}
\mathrm{a}^{2}-\mathrm{b}^{2} & =(\mathrm{a}-\mathrm{b})(\mathrm{a}+\mathrm{b}) \\
4-9 \mathrm{~m}^{2} & =(2)^{2}-(3 \mathrm{~m})^{2} \\
& =(2-3 \mathrm{~m})(2+3 \mathrm{~m})
\end{aligned}
$$

Question 5 Factorise the following expressions

a) $16 x^{2}-1$
b) $\quad \overline{\mathrm{x}} \mathrm{r}^{2}+2 \overline{\mathrm{x}} \mathrm{r} h+\overline{\mathrm{x}} \mathrm{rh} \mathrm{l}$
c) $\quad \bar{x}^{2}-2 x-15$

Solution

a) $16 x^{2}-1=(4 x)^{2}-(1)^{2}$
$=(4 x-1)(4 x+1)$
b) $\quad \overline{\mathrm{x}} \mathrm{r}^{2}+2 \overline{\mathrm{x}} \mathrm{rh}+\overline{\mathrm{x}} \mathrm{rl}$
$=\quad \overline{\mathrm{x}}(\mathrm{r}+2 \mathrm{~h}+\mathrm{l})$
c) $\quad x^{2}-2 x-15$

Factors of $-15 x^{2} \quad$ sum of factors
$-5 x$ and $+3 x \quad-2 x$
$+5 x$ and $-3 x \quad 2 x$
$+15 x$ and $-x \quad+14 x$
Replace $-2 x$ by $-5 x \&+3 x$
$x^{2}-5 x+3 x-15$
$x(x-5)+3(x-5)$
$(x+3)(x \underline{-5})$

Question 6

Use the formulae $\mathrm{x}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ to solve $3 \mathrm{x}^{2}-4 \mathrm{x}+1=0$
Solution

$$
\begin{array}{rll}
\text { Note: } \mathrm{a} & = & \text { The coefficient of } x^{2} \\
\mathrm{~b} & = & \text { The coefficient of } x
\end{array}
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

c $\quad=\quad$ The constant

$$
\begin{aligned}
& x=+3, \quad b=-4, \quad c=+1 \\
& x=-\frac{-(-4) \pm \sqrt{(-4)^{2}-4(3 \times 1)}}{2 \times 3} \\
& x=\frac{4 \pm \sqrt{4}}{6} \\
& x=\frac{4+\sqrt{4}}{6} \\
& x=\frac{4 \pm \sqrt{4}}{6} \\
& =\frac{6}{6} \text { or } \frac{2}{6} \\
& :-\quad x=1 \text { or } \frac{1}{3}
\end{aligned}
$$

Question 7

Solve $5 x^{2}-3 x-2=0$

Question 8 Solve

$55 x^{2}-6 x-3=0$

Solution

$$
a=5, b=-6, c=-3
$$

Solution

$a=+5, b=-3, c=-2$
$\mathrm{x}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{-(-3) \pm \sqrt{(-3)^{2}-4 \times(5 \times(-2)}}{2 \times 5}$
$x=\frac{6 \pm \sqrt{96}}{10}$

$$
\begin{array}{ll}
x=\frac{-3 \pm \sqrt{9+40}}{10} & x=\frac{-6 \pm 9.798}{10} \\
=\frac{3 \pm \sqrt{49}}{10} & =\frac{-15,798}{10} \text { or }-\frac{-3798}{10} \\
=\underline{3+7} \text { or } \underline{3-7} & \therefore x=1,5798 \text { or }-03798 \\
=\underline{10} \text { or } \frac{-4}{10} & x=1,58 \text { or }-0,38 \text { to } 2 . \mathrm{dp} .
\end{array}
$$

Question: 9

Solve the equation $5 x^{2}+8 x-2=0$
And leave your answer to d.p.

Solution

$$
\begin{array}{rl}
a=+5, b=+8, c=-2 & a=+3, b=+7, c+3 \\
x=-\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
x=\frac{-8 \pm \sqrt{8^{2}-4(5 \times-2)}}{2 \times 5} & x=-\frac{-7 \pm \sqrt{7^{2}-4 \times 3 \times 3}}{2 \times 3} \\
x=\frac{-8 \pm \sqrt{64+40}}{10} & x=-\frac{-7 \pm \sqrt{7^{2}-4 \times 3 \times 3}}{2 \times 3} \\
& -x=\frac{-7 \pm \sqrt{49-36}}{6} \\
x=\frac{-8 \pm \sqrt{104}}{10} & x= \\
x=-\frac{-8 \pm 10,2}{10} &
\end{array}
$$

Question 10

Find the roots of the equation $3 x^{2}+7 x+3=0$

Solution

Turn-up College "O" Level Mathematics Questions and answers

$$
\begin{array}{r}
x=\frac{-7+3,606}{6} \text { or }_{-} \frac{-7-3,606}{6} \\
x=-\frac{-3,394}{6} \text { or } \frac{-10,606}{6}
\end{array}
$$

$$
x=-0,57 \text { or }-1,77 \text { to } 2 . d p
$$

$\therefore \therefore \mathrm{x}=0,22$ or $-1,82$

Question 11:

Find the roots of the equation $3 \times 12 \mathrm{x}+10-0$ ${ }^{2}$ -
Solution
$\mathrm{a}=+3, \mathrm{~b}=-12, \mathrm{c}=+10$
$\mathrm{x}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$x=\frac{-(-12) \pm \sqrt{(-12)^{2}-4 \times 3 \times 10}}{2 \times 3}$
$x=\frac{-12 \pm \sqrt{144-120}}{6}$
6
$x=\frac{12 \pm \sqrt{24}}{6}$
$x=\frac{12 \pm 4,899}{6}$
$\mathrm{x}=\frac{12-4,899}{6}$ or $\frac{12+4,899}{6}$

$:-x=2,82$ or 1,18 to 2.d.p

Question 12:

Turn-up College "O" Level Mathematics Questions and answers

Solve 3x ${ }^{2}-8 x+2=0$
Solution
$a=+3, b=-8, c=+2$
$\mathrm{x}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$b=+3, c=-3, a=+5$
$\frac{-(-8) \pm \sqrt{(-8)^{2}-4 \times 3 \times 2}}{2 \times 3}$
$=\frac{8 \pm \sqrt{64-24}}{6}$
$=\frac{8 \pm \sqrt{40}}{6}$
$=\frac{8 \pm 6,325}{6}$
$=\frac{8+6,325}{6}$ or $\frac{8-6,325}{6}$
2,3875 0,27916
$=\frac{14,325}{6}$ or $\frac{1,675}{6}$
:- $\underline{x=2,39}$ or 0,28 to $2 . d p$.

Question 13: Find the solution of the equation $5 x^{2}+3 x-3=0$.

Solution

$$
\begin{aligned}
& \frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-(+3) \pm \sqrt{32-4(5 x-3)}}{2 \times 5} \\
& =\frac{-3 \pm \sqrt{9+60}}{10} \\
& =\frac{-3+\sqrt{69}}{10} \\
& =\frac{-3 \pm \sqrt{69}}{10} \\
& =\frac{-3 \pm 8,307}{10} \\
& =\frac{-3+8.307}{10} \text { or } \frac{-3-8.307}{10} \\
& 0,5307
\end{aligned}
$$

$$
:-x=0,53 \text { or }-1,13 \text { to 2.d.p }
$$

Question 14: \quad Solve the quadratic equation $x^{2}+3 x+1=0$ leaving your answer to 2.d.p.
Solution

$$
\begin{aligned}
& \mathrm{a}=+1, \mathrm{~b}=+3, \mathrm{c}=+1 \\
& \mathrm{x}=-\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& \equiv-\frac{+3 \pm \sqrt{3^{2}-4(1 \times 1)}}{2 \times 1}
\end{aligned}
$$

Turn-up College "O" Level Mathematics Questions and answers

$$
\begin{aligned}
& =-\frac{3 \pm \sqrt{9-4}}{2} \\
& =-\frac{3 \pm \sqrt{5}}{2} \\
& =\frac{-3 \pm 2,236}{2} \text { or } \frac{-3-3236}{2} \\
& 0,382 \\
& \frac{0,764}{2} \text { or } \frac{5,236}{2} \\
& x=-0,38 \text { or }-2,62 \text { to } 2 . d . p
\end{aligned}
$$

Quotation 15. Find the roots of the equation $x^{2}-2 x-4=0$ and leave your answer to 2.d.p.

Solution

$$
\begin{aligned}
& a=+1, b=-2, c=-4 \\
& x=-\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1 \times-4)}}{2 \times 1} \\
& \equiv \frac{2 \pm \sqrt{4+6}}{2} \\
& =\frac{2 \pm 4,472}{2} \\
& =\frac{2-4,472}{2} \text { or } \frac{2-4,472}{2} \\
& 3,236 \\
& =\frac{6,472}{2} \text { or } \quad \frac{-1,236}{2}
\end{aligned}
$$

$\underline{x}=3,24$ or $-1,24$ to $2 . d . p$

Question 16

a) Draw the graph of the function $x^{2}+2 x-2$ from $x=-4$
to $\mathrm{x}=+2$
b) Hence find the approximate roots of the equation.
$x^{2}+2 x-2=0$

Q17

a)Draw the graph of the function
$11+8 x-2 x^{2}$ from $x=-2$ to $x=+6$
b) Hence find the approximate roots of the equation
$2 x^{2}-8 x-11=0$
Solution
$\mathrm{y}=11+8 \mathrm{x}-2 \mathrm{x}^{2}$

x	-2	-1	0	1	2	3	4	5	6
y	-13	1	11	17	19	17	11	1	13

CHAPTER 4

Inequalities

1. Illustrate the following inequalities on the number line and give integral values of x which satisfy the inequalities
a) $\quad x>4$
b) $\quad x \leq-2$
c) $\quad-3<x<4$
d) $-1<2 x-3 \leq 5$

Solution

Turn-up College "O" Level Mathematics Questions and answers
a)

b)

x can assume any integer value less than or equal to- 2
c)

$\begin{array}{lll}-3 & 0 & 4\end{array}$
x can assume any integer value less than 4 and greater than -3 but not 4 or -3 ie $x=-2,-1$, 0,1,2 or 3 .
d) $\quad-1<2 x-3<5$
$-1+3<2 x \leq 5+3$
$\frac{2}{2}<\frac{2}{2} \leq \frac{8}{2}$
$1<x \leq \leq 4$

x can assume any integer value less than or equal to 4 but greater than 1 i.e. $x=2,3$, or 4
2. Write the inequalities
$x+1<6<2 x+4$ in the form
$\mathrm{A}<x<\mathrm{B}$, stating the values of A and required

Solution

$x+1<6<2 x+4$

Note: Take each inequality separately.
$x+1<6$
$x<6-1$
$x<5$

$$
\begin{aligned}
& 6<2 x+4 \\
& \frac{2}{2}<\frac{2 x}{2}
\end{aligned}
$$

$1<x$
$1<x<5$
Turn-up College "O" Level Mathematics Questions and answers
$:-\quad \mathrm{A}=1$ and $\mathrm{B}=5$
3. If x is a prime number

List the values of x which satisfy $x>9$ and $2 x-5<39$.
$2 x<39+5$
$\frac{2 x}{2}<\frac{44}{2}$
$x<22$

Solution

$2 x<39+5$
$\frac{2 x}{1}<\frac{44}{2}$
$x<22$
:- $\quad 9<x<22$
Thus combining the two inequalities

The values of x are 11, 13, 17, 19
4) Find the true set of
$2 \mathrm{y}-1>2 \mathrm{y}+5$ and illustrate
$\mathrm{O}>6$ contradiction! no true set

Solution

$$
\frac{2 y-1}{2}>\frac{2 y+5}{5} \quad \text { Remove fractions first }
$$

$5(2 y-1)>2(2 y+5)$
$10 y-5>4 y+10$
$10 y-4 y>10+5$
$\frac{6}{6} y>\frac{15}{6}$
$\mathrm{y}>2 \frac{1}{2}$
The truth set is $\quad y: y>21 / 2$

5. List the integer values which satisfy: $1 x \leq 10-2 x<7$

Solution

Note: Split the inequality into two
$1-x \leq 10-2 x \quad 10-2 x<7$
$-x+2 x \leq 10-1$
10-7 < $2 x$
$x<9$
$\frac{3}{2}<\frac{2 x}{2}$

$$
x>1 \frac{1}{2}
$$

$:-\quad 1 \frac{1}{2}<x \leq 9$
The integer values which satisfy this are:- 2, 3,4,5,6,7,8,9.
6. Solve the following inequalities and show them on a number line
a) $2 x-3<5$
b) $-2<3-x \leq 5$
c) $-3 \leq 2 x-1 \leq 7$

Solution
a) $2 x-3<5$
$2 x<5+3$
$\frac{2 x}{2} \prec \frac{8}{2}$
$x<4$

b) $\quad-2<3-x \leq 5$
$-2<3-x$
$-2-3<-x$
$\frac{-5}{-1}<\frac{-x}{-1}$
5>x
3- $x<5$
c) $\quad-3 \leq 2 x-1$
$3-5 \leq x$
$-3+1 \leq 2 x$
$-2 \leq x$ $\underline{-2} \leq \underline{2} x$

Turn-up College "O" Level Mathematics Questions and answers

Illustrate the inequalities

On the number line and give integral values which satisfy each inequality
a) $-5 \leq 3 x+1<10$
b) $6<5 x-1 \leq 29$

Solution
a) $-5 \leq 3 x+1 \quad 3 x+1<10$
$-5-1 \leq 3 x \quad 3 x<10-1$
$\frac{-6}{3} \leq \frac{3 x}{3} \quad \frac{3 x}{3}<\frac{9}{3}$
$-2 \leq x \quad x<3$
$-2 \leq x<3$

$x=-2,-1,0,1,2$
b) $\quad 6<5 x-1 \leq 29$
$5 x-1 \leq 29$
$6<5 x-1 \quad 5 x \leq 29+1$
$6+1<5 x \quad \frac{5 x}{5} \leq \frac{30}{5}$
$\frac{7}{5}<\frac{5 x}{5}$
$\frac{7}{5}<x \quad x \leq 6$

Turn-up College "O" Level Mathematics Questions and answers

$$
\frac{7}{5}<x \leq 6
$$

$$
x=2,3,4,5,6
$$

CHAPTER 5

Variation

1. If $x \propto y$ and $x=5$ when $\mathrm{y}=4$, Find x when $\mathrm{y}=6$ and y when $x=10,5$.

Solution

$x \propto y$
$x=\mathrm{ky}$
$5=k \frac{4}{4}$
$x=\frac{5 y}{4}$

When $\mathrm{y}=6$
$x=\frac{5 y}{4}$
$x=\frac{5 y}{4} \times 6$
$x=\frac{30}{4}$
$x=7 \frac{1}{2}$
When $x=10,5$
$10,5=10 \frac{1}{2}=\frac{21}{2}$
$\mathrm{x}=\frac{5 y}{4}$
$\frac{21}{2}=\frac{5}{4} y$
$\frac{84}{10}=\frac{10 y}{10}$
$\mathrm{y}=8 \frac{2}{5}$
2. Given that $F \alpha \frac{v^{2}}{r}$ and

That $F=50$ when $v=5$ and $r=2$, Find the value of f
When $v=9$ and $r=6$
Solution
$F \alpha \frac{v^{2}}{r}$
r
$\mathrm{F}=F=\frac{k v^{2}}{r}$
Turn-up College "O" Level Mathematics Questions and answers

$$
\begin{aligned}
& 50=\frac{5^{2} k}{2} \\
& 50=\frac{25 k}{2}
\end{aligned}
$$

$\frac{100}{25}=\frac{25 k}{25}$
$4=\mathrm{k} \quad \rightarrow \quad \mathrm{k}=4$
$\mathrm{F}=\frac{4 v^{2}}{r}$
$\mathrm{F}=\frac{4 \times v^{2}}{r}$
$\mathrm{F}=\frac{4 \times 81}{6}$
$F=\frac{324}{6}$
$:-\mathrm{F}=54$
3. $x \alpha \frac{1}{y}$ and $\mathrm{x}=20$ when $\mathrm{y}=\frac{1}{2}$
a) Find the relationship between x and y.
b) Find x when $y=4$
c) Find y when $x=15$

Solution

a) $\quad \mathrm{x} \propto \frac{1}{y}$
$\mathrm{x}=\frac{1}{y} \mathrm{k}$
$20=\frac{k}{\frac{1}{2}}$
$10=\mathrm{k}=\mathrm{k}=10$
: $x=\frac{10}{y}$
b) $x=\frac{10}{y}$

$$
\begin{aligned}
& x=\frac{10}{y} \\
& x=2 \frac{1}{2}
\end{aligned}
$$

c) $x=\frac{10}{y}$

$$
15=\frac{10}{y}
$$

$$
15 y=\frac{10}{y}
$$

$$
y=\frac{2}{3}
$$

4. t varies inversely as r and $t=3.5$ when $r=10$
a) Find the law connecting t and r
b) Find t when $r=10,5$
c) Find r when $\mathrm{t}=28$

Solution

a) $t \alpha \frac{1}{r}$
b) $\quad \mathrm{t}=\frac{35}{r}$
$t=\frac{k}{r}$

$$
\mathrm{t}=\frac{35}{r}
$$

$$
3,5=\frac{k}{10}
$$

$$
t=\frac{35}{10,5} 5
$$

$$
\mathrm{k}=35
$$

$$
\therefore t=3 \frac{1}{3}
$$

c) $\mathrm{t}=\frac{k}{r}$

$$
\begin{aligned}
& 28=\frac{35}{r} \\
& 28=\frac{35}{28} \\
& \therefore r=1 \frac{1}{4}
\end{aligned}
$$

Question 5

The kinetic energy E Joules of a moving object varies jointly as the mass making of the object and the square of its velocity vm / s.
a) Write down an equation connecting E.M, V and A constant K .
b) Given that $\mathrm{E}=150$ joules when the mass of the object $\mathrm{M}=12 \mathrm{~kg}$ and the velocity $\mathrm{v}=5 \mathrm{~m} / \mathrm{s}$, find the value of k.
c) Calculate the kinetic energy E of an object of mass 24 kg which is moving with a velocity of $7 \mathrm{~m} / \mathrm{s}$.

Solution

> a) $\quad \begin{aligned} & \mathrm{E}\end{aligned} \mathrm{mv}^{2}$
> $\mathrm{E}=\mathrm{kmv}^{2}$
.Question $6 \quad \mathrm{P}$ is partly constant and partly varies as $\mathrm{Q} . \mathrm{P}=120$ when $\mathrm{Q}=5$ and $\mathrm{P}=100$ when $\mathrm{Q}=3$ Find :-
b) $\quad \mathrm{E}=\mathrm{km} \mathrm{x}^{2}$
a) P when $Q=15$
$150=\mathrm{k} \times 12 \times 5^{2}$
b) Q when $\mathrm{P}=360$

$$
150=\mathrm{k} \times 12 \times 25
$$

$$
\frac{150}{300}=k \frac{30 \theta}{30 \theta}
$$

Solution

$$
1 / 2=\mathrm{k} \quad \therefore \quad \mathrm{k}=1 / 2
$$

$\mathrm{P}=\mathrm{a}+\mathrm{kQ}$
$120=a+5 k$ (i)
c) $\mathrm{E}=1 / 2 \mathrm{mv}^{2}$
(100 $=\mathrm{a}+3 \mathrm{k}$) (ii)
$\mathrm{E}=1 / 2 \times 24 \times 7^{2}$
$\mathrm{E}=1 / 2 \times 24 \times 49$
Subtract (ii) from (i)
$\mathrm{E}=588 \mathrm{~J}$

$$
\begin{aligned}
& \frac{20}{2}=\frac{k 2}{2} \\
& 10=\mathrm{k} \quad \therefore \quad \quad \mathrm{k}=10
\end{aligned}
$$

$$
\begin{aligned}
& 120=a+10(5) \\
& 120-50=a \\
& 70=a \quad \therefore \quad a=70
\end{aligned}
$$

a) $\quad \mathrm{p}=70+10 \mathrm{q}$
$\mathrm{P}=70+10$ (15)
$\mathrm{P}=70+150$

Turn-up College "O" Level Mathematics Questions and answers

$\mathbf{P}=220$

$$
\text { b) } \quad \begin{aligned}
& \mathrm{P}=70+10 \mathrm{Q} \\
& 360=70+10 \mathrm{Q} \\
& 360-70=10 \mathrm{Q} \\
& \frac{290}{10}=\frac{10 \mathrm{Q}}{10}
\end{aligned}
$$

$$
\begin{array}{ll}
& 29=\mathrm{Q} \\
:-\quad & \mathbf{0}=\mathbf{2 9} \\
\hline
\end{array}
$$

Question 7

$\mathrm{x} \alpha \mathrm{y}$ and $\mathrm{x}=7$ when $\mathrm{y}=20$
a) Find x when $y=60$
b) Find y when $x=21$

Solution

x α y
b) $\mathrm{x}=\frac{7 y}{20}$
$\mathrm{x}=\mathrm{ky}$

$$
21=\frac{7 \times y}{20}
$$

$\underline{7}=\mathrm{k} \frac{20}{20}$

$$
\frac{420^{60}}{7}=\frac{7 y}{7}
$$

$\mathrm{k}=\frac{7}{20}$
7

$$
60=y
$$

a) $x=\frac{7 y}{20}$
$x=\frac{7 \times 60}{20}$

$\mathrm{x}=21$

$$
y=60
$$

Question 7.

Given that c varies directly as d and $\mathrm{c}=25$ when $\mathrm{d}=4$
a) Find the law connecting c and d .
b) Find d when $\mathrm{c}=75$

Solution

c $\alpha \mathrm{d}$
a) $\quad \mathrm{C}=\mathrm{kd}$

$$
\begin{array}{ll}
\mathrm{c}=\mathrm{kd} & \mathrm{C}=\frac{25 d}{4} \\
25=\frac{k 4}{4} & \text { b) } \\
\mathrm{k}=\frac{25}{4} & \mathrm{C}=\frac{25 d}{4} \\
& 75=\frac{25 d}{4} \\
& \frac{300}{25}=\frac{25 d}{25} \\
& 12=\mathrm{d} \\
& \therefore \mathrm{~d}=12
\end{array}
$$

Question 8:

Given that r varies directly as the square of t and $\mathrm{r}=5$ when $\mathrm{t}=\frac{1}{3}$
a) Find the relationship between r and t
b) Find v when $r=5$
b) Find t when $r=405$
c) Then r when $v=32$

Solution

(a) $r \alpha t^{2}$
$\mathrm{r}=\mathrm{kt}^{2}$
$5=\mathrm{k}\left(\frac{1}{3}\right)^{2}$
$5=\mathrm{k}\left(\frac{1}{9}\right)$
$45=\mathrm{k}$

$$
:-\underline{k=45}
$$

a) $r=45 t^{2}$
b) $\quad \mathrm{r}=45 \mathrm{t}^{2}$

$$
\begin{array}{rlr}
\frac{405}{45}=\frac{45 t}{45} & \text { a) } v=k r^{3} \\
v & =4 r^{3}
\end{array}
$$

Solution

$V=k r^{3}{ }^{\mathrm{v}} \alpha \mathrm{r}^{3}$
$108=3^{3} k$
$\frac{108}{27}=\frac{27 k}{27}$
$4=\mathrm{k}$
:- $\mathrm{k}=4$

$$
\begin{array}{rlr}
\sqrt{9} & =\sqrt{ } t^{2} & \text { b) } v=4 r^{3} \\
+3 & =t & v=4\left(5^{3}\right) \\
\therefore-\mathrm{t} & =-3 \text { or } 3 & \\
\hline & & v=4 \times 125 \\
& & v=500
\end{array}
$$

Question 9:

Given that V varies as the cube of r and that $\mathrm{v}=108$ when $\mathrm{r}=3$
a) Find the law connecting v and r
b) Find v when $r=5$
c) Find r when $v=32$

Solution

$\mathrm{V} \alpha r^{3}$
$\mathrm{V}=\mathrm{k} r^{3}$
$108=k 3^{3}$
$\frac{108}{2727}=k \frac{27}{27}$
$4=\mathrm{k}$
$\therefore \mathrm{k}=4$
a) $\quad \mathrm{V}=\mathrm{kr}^{3}$ $\mathrm{V}=4 \mathrm{r}^{3}$
b) $\quad V=4 r^{3}$

$$
V=4(5)^{3}
$$

$\mathrm{V}=4 \times 125$
$\mathrm{V}=500$
c) $\quad V=4 r^{3}$

$$
\frac{32}{4}=\frac{4 r^{3}}{4}
$$

$3 \sqrt{ } 8=3 \sqrt{ } \mathrm{r}^{3}$
$2=\mathrm{r}$
$\therefore \mathrm{r}=2$
Question 10: Given $y \alpha x$ and $y=54$ when $x=9$
a) Find the relationship between y and x
b) Find y when $\mathrm{x}=1 \frac{7}{9}$
c) Find x when $y=72$

Turn-up College "O" Level Mathematics Questions and answers

Solution

y αx
$\mathrm{y}=\mathrm{kx}$
$\frac{54}{9}=\frac{\mathrm{k} 9}{9}$
a) $\mathrm{y}=\mathrm{kx}$
$y=6 x$
b) $y=6 x$

$$
y=6^{2} \times \frac{16}{9^{3}}
$$

$6=\mathrm{k} \Rightarrow \mathrm{k}=6$

$$
y=\frac{64}{81}
$$

c) $y=6 x$

$$
\begin{aligned}
\frac{72}{6} & =\frac{6 x}{6} \\
12 & =x \\
:-\quad x & =12
\end{aligned}
$$

Question 11: Given that q varies as the cube root of P and $q=7$ when $p=27$
a) Find the law connecting q and p.
b) Find p when $\mathrm{q}=14$
c) Find q when $\mathrm{p}=\frac{18}{125}$

Solution

$\mathrm{q} \alpha \sqrt[3]{p}$
$\mathrm{q}=\mathrm{k} \sqrt[3]{p}$
$7=k \sqrt[3]{27}$
$\frac{7}{3}=k \frac{3}{3} \quad \Rightarrow \quad k=\frac{7}{3}$
a) $\quad \mathrm{q}=\mathrm{k} \sqrt[3]{p}$
$\mathrm{q}=7 \sqrt[3]{p}$
b) $\quad \mathrm{q}=\frac{3}{7}^{3} \sqrt{ } \mathrm{p}$
c) $\quad \mathrm{q}=\frac{7}{3}^{3} \sqrt{ } \mathrm{p}$

Turn-up College "O" Level Mathematics Questions and answers
$14=7^{3} \sqrt{p}$

$$
\mathrm{q}=\frac{7}{3} \times \sqrt[3]{\frac{18}{125}}
$$

$$
14=\underline{7}^{3} \sqrt{ } \mathrm{p}
$$

$$
\mathrm{q}=\frac{14}{3}
$$

$$
\begin{aligned}
& \frac{42^{6}}{7}=\frac{7 \times \sqrt[3]{p}}{7} \\
& (6)^{3}=(3 \sqrt{ } \mathrm{p})^{3} \\
& 216=\mathrm{p} \\
& \therefore-\mathrm{p}=216
\end{aligned}
$$

Question 12:

Given that A varies directly as the square of x and $\mathrm{A}=10$ when $\mathrm{x}=2$
a) Find the law connecting A and x
b) Find A when $x=6$
c) Find x when $A=50$, leaving your answer in surd form

Solution

A αx^{2}
b) $\quad \mathrm{A} \quad=\frac{5}{2} x^{2}$
$A=k x^{2}$
A $=\frac{5}{2} \times 6^{2}$
A $=\frac{5}{2} \times 36$
$\underline{10}=4 \mathrm{k}-$
44
$\frac{k}{2}=\frac{5}{2}$
A $=90$
c) $\quad \mathrm{A}=\frac{5}{2} x^{2}$
a) $\mathrm{A}=\mathrm{kx}{ }^{2}$
$50=\frac{5 x^{2}}{2}$
$\mathrm{A}=\frac{5 x^{2}}{2}$

$$
\begin{aligned}
& \frac{1^{20}}{5}=\frac{5 x^{2}}{5} \\
& \sqrt{ } 20=\quad \sqrt{ } x^{2} \\
& 2 \sqrt{ } 5=\quad x
\end{aligned}
$$

$$
\therefore-\mathrm{x}=2 \sqrt{ } 5
$$

Question 13

$\mathrm{x} \alpha \mathrm{y}$ and $\mathrm{x}=17 \frac{1}{2}$ when
$y=10 \frac{1}{2}$
a) Find the equation which connects x and y
b Find x when $\mathrm{y}=12$

Solution

$\mathrm{x} \alpha \mathrm{y}$
$\mathrm{x}=\mathrm{ky}$
$\frac{35}{2}=k \frac{21}{2}$
$x=\frac{5 y}{3}$
$\frac{7^{5}}{42}=\frac{k-42}{42}$
b) $x=\frac{5 y}{3}$
$\frac{5}{3}=k \quad \Rightarrow \quad k=\frac{5}{3}$

$$
x=5 \times 12^{4}
$$

$$
\mathbf{x}=20
$$

Question 14: If y varies directly as the square root of $x(x, y)$ always positive) and $y=9$ when x $=9$, Find x when $\mathrm{y}=15$.
Solution
$y \propto \sqrt{x}$
$y=k \sqrt{ }$
$9=k \sqrt{ } 9$
$\frac{\stackrel{3}{9}}{3}=\frac{\star 3}{3}$ (the value of x)
$3=k \quad k=3$
$\mathrm{y}=\mathrm{k} \sqrt{ } x$
$y=3 \sqrt{ } x$
$\frac{3^{3}}{4} \mathbf{3}=\frac{3 \sqrt{x}}{3}$
$(5)^{2}=(\sqrt{ } x)^{2}$
$25=x$
$\therefore x=25$

Question 15:

For circular wires of a given length, the electrical resistance varies as the square of their diameters. If the resistance is 0,718 OHMS when the diameter is $2,4 \mathrm{~mm}$, Find the Resistance when the diameter is $1,8 \mathrm{~mm}$ (correct to 3 significant figures)

Solution

$\mathrm{R}=\quad$ Resistance
$\mathrm{D}=$ Diameter
$\mathrm{R} \alpha \mathrm{d}^{2}$
$\mathrm{R}=\mathrm{kd}^{2}$
$0,718=k(2,4)^{2}$

$$
\begin{aligned}
\mathrm{R} & =0,12465 \mathrm{~d}^{2} \\
\mathrm{R} & =0,12465(1,8)^{2} \\
& =0,12465 \times 3,24 \\
& =0,403866 \\
:-\mathrm{R} & =0,404 \text { to } 3 . S . F
\end{aligned}
$$

$\frac{0,718}{5,76}=\frac{k 5,76}{5.76}$
$0,12465=k \quad k=0,12465$

Question 16:

If y varies inversely as x , and $\mathrm{y}=2$ when $\mathrm{x}=3$, Find y when $\mathrm{x}=6$.

Solution

$\mathrm{y} \alpha \frac{1}{x}$
$\mathrm{y}=\frac{k}{x}$
$2=\frac{k}{3}$
$2 \times 3=k \quad \Rightarrow k=6$
$y=\frac{6}{6}$
Turn-up College "O" Level Mathematics Questions and answers
$y=1$
Question 17:
P is inversely proportional to Q and $\mathrm{P}=5$ when $\mathrm{Q}=4$.
What is the value of Q when $\mathrm{P}=25$
Solution
$\mathrm{P} \propto \frac{1}{\mathrm{Q}}$
$P=\underline{k}$
Q
$5=\mathrm{k} / 4$
$5=\quad \underline{k}$
4
$4 \mathrm{x} 5=\mathrm{k} \longrightarrow \mathrm{k}=20$
Question 18: If a varies inversely as the square of y, and $\mathrm{x}=4$ when $\mathrm{y}=1 / 2$, what is y when x is 5 ?

Solution

$\mathrm{x} \propto \frac{1}{y^{2}}$
$\mathrm{x}=\frac{1}{y^{2}}$
$4=\frac{k}{\left(\frac{1}{2}\right)^{2}}$
$\mathrm{P}=\frac{20}{Q}$

$$
4=\frac{k}{\frac{1}{4}}
$$

$$
1 / 4
$$

$\mathrm{P}=\underline{20}$
$25=\underline{20}$
$\frac{25}{25}^{9}=20^{4}$

$$
\mathrm{x}=\frac{1}{\mathrm{y}^{2}}
$$

$25 \quad 25_{5}$
$\mathrm{Q}=\underline{4}$

$$
\begin{aligned}
& 4 \times^{1 / 4}=\mathrm{k} \\
& 1=\mathrm{k} \quad \mathrm{k}=1
\end{aligned}
$$

$$
5=\frac{1}{y^{2}}
$$

5

$$
\begin{aligned}
& 5 y^{2}=\frac{1}{5} \\
& 5 \\
& \sqrt{y^{2}}=\sqrt{\frac{1}{3}} \\
& \mathrm{y} \equiv \sqrt{\frac{1}{5}}
\end{aligned}
$$

Question 19:

The electrical residence R of a wire varies inversely as the square of the radius r use a constant k to show the relation between R and r .

Solution

$\mathrm{R} \propto \frac{1}{r^{2}}$
$\mathrm{R}=\frac{k}{r^{2}}$

Question 20:

P. Varies inversely as the square root of v and $P=4,5$ when $v=25$. Find v when $P=15$
Solution
P $\alpha \frac{1}{\sqrt{v}}$
$4,5=\frac{k}{\sqrt{25}}$
$22,5=k$
$\mathrm{P}=\frac{22,5}{\sqrt{v}}$
$\frac{15}{15} \sqrt{v}=\frac{22,5}{15}$
$(\sqrt{v})^{2}=(1,5)^{2}$
$\mathrm{v}=2,25$

Question 21

X varies inversely as the cube root of y and $\mathrm{x}=4$ when
$\mathrm{Y}=125$
a) Find the law connecting x and y
b) Find x when $y=64$
c) Find y when $x=2,5$

Solution

$\begin{aligned} \mathrm{x} & \propto \underset{1}{1} \\ & \sqrt[3]{\mathrm{y}}\end{aligned}$
b) $\quad x=\frac{20}{\sqrt[3]{64}}$
$\mathrm{x}=\mathrm{k}$
$\sqrt[3]{\mathrm{y}}$
$x=20^{5}$
4
$4=\frac{k}{\sqrt[3]{125}}$
$\underline{x=5}$
$4=\frac{k}{5}$
$\underline{k}=20$
c) $x=\frac{20}{\sqrt[3]{y}}$

$$
\underline{2,5} x^{3} \sqrt{ } y=\underline{20}
$$

$$
25 \quad 2,5
$$

$$
(\sqrt[3]{ } \sqrt{y})^{3}=(8)^{3}
$$

$$
y=512
$$

Question 22:

Given $\mathrm{A} \alpha \frac{1}{B}$ and $\mathrm{A}=5$ when $\mathrm{B}=\frac{1}{3}$
a) Find the law connecting A and B
b) Find A when $\mathrm{B}=7$
c) Find B when $A=25$

Solution

A $\alpha \frac{1}{B}$
b) $\mathrm{A}=\frac{5}{3 B}$
$\mathrm{A}=\frac{k}{B}$

$$
\mathrm{A}=\frac{5}{3 \times 7}
$$

$5=\frac{k}{\frac{1}{3}}$

$$
\mathrm{A}=\frac{5}{21}
$$

$5 \mathrm{x} 1 / 3=\mathrm{k} \quad \mathrm{k}=\underline{5}$
Turn-up College "O" Level Mathematics Questions and answers
a) $\quad \mathrm{A}=\underline{5}$

3
$:-\quad \mathrm{A}=\frac{5}{3 B}$
c) $\mathrm{A}=\frac{5}{3 B}$
$25=\frac{5}{3 B}$
$25 \times 3 B=5$

$$
\frac{75 B}{75}=\frac{5}{75}
$$

$B=\frac{1}{15}$

Question 23:

V varies inversely as the square of W and $\mathrm{v}=7$.
When $W=3$. Find W when $v=13 / 4$
$V \propto \frac{1}{w^{2}}$
$\mathrm{V}=\frac{63}{W^{2}}$
$\mathrm{V}=\frac{K}{W^{2}}$
$7=\quad \frac{k}{3^{2}}$
$9 \times 7=k$
$\underline{k}=63$
$:-\mathrm{v}=\frac{63}{w^{2}}$
$\frac{7}{4}=\frac{63}{w^{2}}$
Turn-up College "O" Level Mathematics Questions and answers
$7 w^{2}=63 \times 4$
$\frac{7 w^{2}}{7}=\frac{252}{7}$
$\sqrt{ } \mathrm{w}^{2}=\sqrt{ } 36$
$\underline{W}=6$
Question 24:
A varies inversely as the cube root of B and $\mathrm{A}=5$ when $\mathrm{B}=216$.
Find A when $\mathrm{B}=3,375$

Solution

Question 25

C varies as the cube root of D and D $=125$ when $C=2$. Find C when $D=8$
$A \alpha \frac{1}{\sqrt[3]{B}}$
3
$\mathrm{A}=\frac{k}{\sqrt[3]{B}}$
C $\alpha \frac{1}{\sqrt[3]{D}}$
$2=\frac{k}{\sqrt[3]{D}}$
$5=\frac{k}{\sqrt[3]{216}}$
$2=\frac{k}{\sqrt[3]{125}}$
$2=\frac{k}{5}$
$5=\frac{k}{6}$
6

$$
2 \times 5=\mathrm{k} \quad \therefore \quad \mathrm{k}=10
$$

$6 \times 5=\mathrm{k} \therefore \quad \mathrm{k}=30$
$\mathrm{A}=\frac{30}{\sqrt[3]{B}}$
$C=\frac{10}{\sqrt[3]{D}}$
$A=\frac{30}{\sqrt[3]{3,375}}$
$C=\frac{10}{\sqrt[3]{8}}$
$A=\frac{30}{1,5}$
$\mathrm{C}=\frac{10}{2}$
$\therefore \mathrm{A}=20$

$$
\mathrm{C}=5
$$

Turn-up College "O" Level Mathematics Questions and answers

Question 26: x, y and Z are related quantities such that x varies directly as y and inversely at the square root Z when $x=300$ and $y=65, Z=25$. Calculate the value of x when $y=468$ and $Z=$ 144.

Solution

$$
\begin{aligned}
& \mathrm{x} \alpha \mathrm{y} \underline{\mathrm{x}} \frac{1}{\sqrt{\mathrm{Z}}} \\
& \mathrm{x}=\frac{\mathrm{ky}}{\sqrt{\mathrm{Z}}} \\
& 300=\underline{\frac{\mathrm{k} \times \frac{65}{}}{\sqrt{25}}} \\
& 300=\frac{\mathrm{kx} 65}{5} \\
& \therefore 3900=\mathrm{k} \\
& \mathrm{x}=\frac{3900 \mathrm{y}}{\sqrt{Z}} \\
& \mathrm{x}=\frac{3900 \times 468}{\sqrt{144}} \\
& \mathrm{x}=\frac{1825200}{12} \\
& \mathrm{x}=152100
\end{aligned}
$$

Question 27:

V varies directly as the square of D and inversely as H. Given that $V=40$ when $H=10$ and $D=4$.
a) Find V when $\mathrm{D}=5$ and $\mathrm{H}=7$
b) Find D when $\mathrm{V}=75$ and $\mathrm{H}=3$

Solution

(a) $\mathrm{V} \alpha \frac{D^{2}}{H}$
a) $\quad \mathrm{V}=\frac{25 D^{2}}{H}$
H
$\mathrm{V}=\underline{\mathrm{KD}^{2}}$

H

$$
\mathrm{V}=\frac{25 \times 25}{7}
$$

$40=\frac{k \times 4^{2}}{10}$

Turn-up College "O" Level Mathematics Questions and answers
$40=\frac{k \times 16}{10}$
$40 \times 5=8 k$
$V=\frac{635}{7}$
$\frac{200^{25}}{8}=8 \mathrm{k}$
$\underline{V}=89,29$
$25=\mathrm{k} \quad \therefore \quad \mathrm{k}=25$
b) $\quad \mathrm{V}=\frac{25 D^{2}}{H}$

$$
75=\frac{25 \times D^{2}}{3}
$$

$$
75 \times 3=25 D^{2}
$$

$$
\frac{225}{25}=\frac{25}{25} D^{2}
$$

$$
\sqrt{9}=\sqrt{D^{2}}
$$

$\therefore \quad \mathrm{D}=-3$ or +3
Question 28: If W varies jointly as the square of x and as y , Find the law that connects W , x and y. Given $W=72, x=3$ and $y=4$ use the law to Find:-
a) \quad w when $x=13$ and $y=50$
b) x when $W=1350$ and $y=3$

Solution
a) $W \alpha x^{2} y$
$\mathrm{W}=\mathrm{kx}^{2} \mathrm{y}$
$72=\mathrm{k} \times 3^{2} \times 4$
$72=\mathrm{k} \times 36$
$\frac{2_{2}^{2}}{36}=\frac{k, 36}{36}$
$2=\mathrm{k}$ $\therefore \mathrm{k}=2$

$$
\begin{aligned}
& \mathrm{W}=2 \mathrm{x}^{2} \mathrm{y} \\
& \mathrm{~W}=2 \times 13^{2} \times 50 \\
& \mathrm{~W}=2 \times 169 \times 50
\end{aligned}
$$

$$
W=16900
$$

b) $\quad W=2 x^{2} y$

$$
1350=2 \times x^{2} \times 3
$$

$$
\begin{aligned}
& \frac{1350}{6}=\frac{6 x^{2}}{6} \\
& \sqrt{225}=\sqrt{x^{2}} \\
& \neq 15=x \\
\therefore \quad & \quad x=15 \text { or } 15
\end{aligned}
$$

Question 29:

P Varies Directly as Q and inversely as R . Given that $\mathrm{P}=37,5$ when $\mathrm{Q}=76$ and $\mathrm{R}=2$, Find R when $\mathrm{P}=25$ and $\mathrm{Q}=3,5$

Solution

$$
\begin{array}{ll}
\hline \mathrm{P} \alpha \mathrm{Q} \times \frac{1}{R} & P=\frac{K Q}{R} \\
P=\frac{K Q}{R} & 37,5=\frac{k 76}{2} \\
\frac{37,5}{38} & =\frac{k 38}{38} \\
0,987 & =\mathrm{k} \quad \therefore \quad \mathrm{k}=0,987
\end{array}
$$

$P=\frac{0,987 Q}{R}$
$25=\frac{0,987}{R} \times 3.525$
$\underline{R}=0,138$

Question 30:

The mass M of a steel rod of uniform circular cross- section varies jointly as the square of the radius and length ℓ. A rod of radius 2 cm has a mass of 420 g . Its length is 15 cm .
a) Find the mass of a rod of radius 3 cm and length 10 cm .
b) Find the radius of a rod having a mass of 180 g if its length is $10 \frac{2}{7} \mathrm{~cm}$

$$
\begin{aligned}
& \frac{\text { Solution }}{\mathrm{M} \alpha \mathrm{r}^{2} \ell} \\
& \mathrm{M}=\mathrm{Kr}^{2} \ell \\
& 420=\mathrm{k} 2^{2} \times 15 \\
& 7=\mathrm{k} \quad \therefore \quad \mathrm{k}=7 \\
& \frac{420}{60}=\frac{k 60}{60}
\end{aligned}
$$

a) $\quad \mathrm{M}=7 \mathrm{r}^{2} \ell$

$$
\begin{aligned}
& \mathrm{M}=7 \times 3^{2} \times 10 \\
& \mathrm{M}=7 \times 9 \times 10 \\
& \mathrm{M}=630 \mathrm{~g}
\end{aligned}
$$

b) $\quad \mathrm{M}=7 \mathrm{r}^{2} \ell$

$$
\begin{aligned}
& 180=7 \times \mathrm{r}^{2} \times \frac{72}{7} \\
& \frac{180}{72}=\frac{72 r^{2}}{72} \\
& \sqrt{ } 2,5=\sqrt{ } \mathrm{r}^{2} \\
& 1,58=\mathrm{r} \\
& \therefore-\mathrm{r}=1,58 \mathrm{~cm}
\end{aligned}
$$

Question 30:

The cost of giving a partly is party constant and partly varies as the number of people invited. The cost for 20 people is $\$ 90$ and the cost for 30 people is $\$ 110$.
a) Find the cost if there are 40 people.
b) If the person giving the party does not want to spend more than $\$ 200$, what is the maximum number of guests he should invite.

Solution

$\mathrm{C}=\mathrm{a}+\mathrm{kn}$
$90=\mathrm{a}+\mathrm{k} 20$
(110 $=\mathrm{a}+\mathrm{k} 30$)
(ii)
a) $\mathrm{C}=50+2 \mathrm{~N}$
$\mathrm{C}=50+2(40)$
$\mathrm{C}=50+80$
$\mathrm{C}=\$ 130$

Subtract (i) from (ii) you get
$\frac{20}{10}=\frac{k 10}{10}$
b) $\mathrm{C}=50+2 \mathrm{~N}$
$200=50+2 \mathrm{~N}$
$200-50=2 \mathrm{~N}$
$150=2 \mathrm{~N}$
$90=a+2(20)$

$$
75=\mathrm{N}
$$

Turn-up College "O" Level Mathematics Questions and answers
$90=a+40$
$90-40=\mathrm{a} \quad$ Maximum number of guests 75

$$
50=\mathrm{a} \quad \therefore \quad \mathrm{a}=50
$$

Question 31

It is given that y is partly constant and partly varies directly as x . Given that when $\mathrm{x}=2, \mathrm{y}=6$ and when $x=6, y=-2$. Find an expression for y in terms of x.

Solution

$y=a+k x$
$6=a+k 2$
$-2=a+k 6$
subtract (ii) from (i)
(ii)
$\frac{8}{-4}=\frac{-4 k}{-4}$
$6=\mathrm{a}+\mathrm{k} 2$
$6=a+-2(2)$
$6=\mathrm{a}-4$
$6+4=\mathrm{a}$
$10=\mathrm{a}$
$y=a+k x$
$y=10-2 x$

Question 32

R is partly constant and partly varies as the square of V . Given that $\mathrm{R}=100$ when $\mathrm{V}=3$, and $\mathrm{R}=$ 80 when $V=2$. Find the law that connects R and V. Find V when $R=164$.
Solution
$\mathrm{R}=\mathrm{a}+\mathrm{kv}{ }^{2}$

> subtract (ii) from (i)

$$
\frac{20}{5}=\frac{5 k}{5}
$$

$100=\mathrm{a}+\mathrm{k} 9$
(i)
$80=a+k 4$
(ii)
$4=\mathrm{k}$
$80=a+4(4)$
80-16 = a
$64=\mathrm{a}$

$$
\begin{aligned}
& \mathrm{R}=64+4 \mathrm{~V}^{2} \quad 164=64+4 \mathrm{~V}^{2} \\
& \frac{100}{4}=\frac{4 V^{2}}{4} \\
& \sqrt{ } 25=\sqrt{ } \mathrm{V}^{2} \\
& \therefore \quad \underline{\mathrm{~V}}=5
\end{aligned}
$$

CHAPTER 6

MATRICES

Simplify the following matrices
a) $\left(\begin{array}{ccc}5 & -1 & 3 \\ -9 & 3 & 0 \\ 8 & 0 & -7\end{array}\right)+\left(\begin{array}{ccc}2 & 6 & 1 \\ -6 & -2 & 8 \\ -5 & 5 & 0\end{array}\right)$
b) $\quad\left(\begin{array}{cc}0 & -1 \\ 9 & 2\end{array}\right)-\left(\begin{array}{ll}3 & 3 \\ 5 & 4\end{array}\right)+\left(\begin{array}{cc}4 & 11 \\ -2 & -5\end{array}\right)$

Solution

a) $\left(\begin{array}{ccc}5 & -1 & 3 \\ -9 & 3 & 0 \\ 8 & 0 & -7\end{array}\right)+\left(\begin{array}{ccc}2 & 6 & 1 \\ -6 & -2 & 8 \\ -5 & 5 & 0\end{array}\right)$
$=\left(\begin{array}{ccc}5+2 & -1+6 & 3+1 \\ -9-6 & 3+-2 & 0+8 \\ 8+(-5) & 0+(-5) & -7+0\end{array}\right)$
$=\left(\begin{array}{ccc}7 & 5 & 4 \\ -15 & 1 & 8 \\ 3 & -5 & -7\end{array}\right)$
b) $\quad\left(\begin{array}{cc}0 & -1 \\ 9 & 2\end{array}\right)-\left(\begin{array}{ll}3 & 3 \\ 5 & 4\end{array}\right)+\left(\begin{array}{cc}4 & 11 \\ -2 & -5\end{array}\right)$
$=\left(\begin{array}{cc}0-3+4 & -1-3+11 \\ 9-5-2 & 2-4-5\end{array}\right)$
$=\left(\begin{array}{cc}1 & 7 \\ 2 & -7\end{array}\right)$

Question 2.

$$
\text { If } A=\left(\begin{array}{cc}
2 & -1 \\
0 & 1
\end{array}\right) \text { and } B=-\left(\begin{array}{cc}
-1 & 0 \\
3 & 1
\end{array}\right)
$$

Find 3A-2B
Solution
Turn-up College "O" Level Mathematics Questions and answers

3A-2B

$$
\begin{aligned}
& =3\left(\begin{array}{cc}
2 & -1 \\
0 & 1
\end{array}\right)-2\left(\begin{array}{cc}
-1 & 0 \\
3 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
6 & -3 \\
0 & 3
\end{array}\right)-\left(\begin{array}{cc}
-2 & 0 \\
6 & 2
\end{array}\right) \\
& =\left(\begin{array}{cc}
6-(-2) & -3-0 \\
0-6 & 3-2
\end{array}\right) \\
& =\left(\begin{array}{cc}
8 & -3 \\
-6 & 1
\end{array}\right)
\end{aligned}
$$

Question 3

If $\mathrm{M}=\left(\begin{array}{ll}1 & 3 \\ 2 & 0\end{array}\right) \quad$ and $\quad \mathrm{N}=\left(\begin{array}{cc}5 & -2 \\ -1 & 4\end{array}\right)$

Find the value of the following
a) $\quad \mathrm{M}+\mathrm{N}$
b) $\quad \mathrm{M}-\mathrm{N}$
c) MN
d) NM

Solution

a) $\quad \mathrm{M}+\mathrm{N}$
b) $\quad \mathrm{M}-\mathrm{N}$
$=\left(\begin{array}{ll}1 & 3 \\ 2 & 0\end{array}\right)+\left(\begin{array}{cc}5 & -2 \\ -1 & 4\end{array}\right)$
$\left(\begin{array}{ll}1 & 3 \\ 2 & 0\end{array}\right)-\left(\begin{array}{cc}5 & -2 \\ -1 & 4\end{array}\right)$
$=\left(\begin{array}{ll}1+5 & 5-2 \\ 2+1 & 0+4\end{array}\right)$
$=\left(\begin{array}{cc}1-5 & 3-(-2) \\ 2-(-1) & -4\end{array}\right)$
$=\left(\begin{array}{cc}5 & -2 \\ -1 & 4\end{array}\right)$
$=\left(\begin{array}{cc}-4 & 5 \\ 3 & -4\end{array}\right)$
c) MN
d) NM

Turn-up College "O" Level Mathematics Questions and answers

$$
\begin{array}{ll}
=\left(\begin{array}{ll}
1 & 3 \\
2 & 0
\end{array}\right)\left(\begin{array}{cc}
5 & -2 \\
2 & 0
\end{array}\right) & =\left(\begin{array}{cc}
5 & -2 \\
-1 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 3 \\
2 & 0
\end{array}\right) \\
=\left(\begin{array}{ll}
1 \times 5+3 \times(-1) & 1 \times(-2)+3 \times 4 \\
2 \times 5+0 \times(-1) & 2 \times(-2)+0 \times 4
\end{array}\right) & =\left(\begin{array}{cc}
5 \times 1+(-2) \times 2 & 5 \times 3+(-2) \times 0 \\
-1 \times 1+4 \times 2 & -1 \times 3+4 \times 0
\end{array}\right) \\
=\left(\begin{array}{cc}
5+(-3) & -2+12 \\
10+0 & -4+0
\end{array}\right) & =\left(\begin{array}{cc}
5+(-4) & 15+0 \\
-1+8 & -3+0
\end{array}\right) \\
=\left(\begin{array}{cc}
2 & 10 \\
10 & -4
\end{array}\right) & =\left(\begin{array}{cc}
1 & 15 \\
7 & -3
\end{array}\right)
\end{array}
$$

Question 4

$\mathrm{P}=\left(\begin{array}{cc}-3 & a \\ b & -1\end{array}\right)$ and $\quad \mathrm{Q}=\left(\begin{array}{cc}-2 & 2 \\ 1 & 3\end{array}\right)$

If $P+Q=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$
Find The values of a and b.

Solution

$$
\begin{align*}
& \mathrm{P}+\mathrm{Q}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right) \\
& \left(\begin{array}{cc}
-3 & a \\
b & -1
\end{array}\right)+\left(\begin{array}{cc}
-2 & 2 \\
1 & 3
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right) \\
& \therefore\left(\begin{array}{cc}
3+-2 & a+2 \\
b+1 & -1+3
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right) \\
& \left(\begin{array}{cc}
1 & a+2 \\
b+1 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right) \\
& \begin{array}{l}
\mathrm{a}+2=0 \ldots \text { (i) } \\
\mathrm{b}+1=0
\end{array} \\
& . .(\mathrm{ii}) \tag{ii}
\end{align*}
$$

$\begin{array}{clll}\text { From (i) } & a+2=0 & a & -2 \\ \text { (iii) } & b+1=0 & b=-1\end{array}$
$\therefore \mathrm{a}=-2$ and $\mathrm{b}=-1$

Question 5

If $\quad\left(\begin{array}{cc}2 & -1 \\ 0 & a\end{array}\right)\left(\begin{array}{ll}b & o \\ 1 & 6\end{array}\right)=\left(\begin{array}{ll}3 & c \\ 3 & d\end{array}\right)$
Find the values of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d .

Solution

$$
\left.\begin{array}{l}
\left(\begin{array}{cc}
2 & -1 \\
0 & a
\end{array}\right)\left(\begin{array}{ll}
b & o \\
1 & 6
\end{array}\right)=\left(\begin{array}{ll}
3 & c \\
3 & d
\end{array}\right) \\
=\therefore\left(\begin{array}{cc}
2 \times b+1 \times 1 & 2 \times 0+(-1 \times 6) \\
0 \times b+a \times 1 & 0 \times 0+a \times 6
\end{array}\right)=\left(\begin{array}{ll}
3 & c \\
3 & d
\end{array}\right) \\
=\left(\begin{array}{cc}
2 b-1 & -6 \\
a & 6 a
\end{array}\right)=\left(\begin{array}{ll}
3 & c \\
3 & d
\end{array}\right) \\
\therefore 2 \mathrm{~b}-1
\end{array} \begin{array}{rl}
\mathrm{a} & =3 \\
\mathrm{c} & =-6
\end{array}\right\} \begin{aligned}
6 \mathrm{a} & =\mathrm{d} \\
\therefore \mathrm{~b} & =2 \\
\mathrm{a} & =3 \\
\mathrm{c} & =-6 \\
\mathrm{~d} & =18
\end{aligned}
$$

Question 6.

$$
\text { The matrices } \mathrm{A}=\left(\begin{array}{ll}
4 & 0 \\
0 & 5
\end{array}\right) \text { and } \mathrm{B}=\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)
$$

$\mathrm{AB}=\mathrm{A}+\mathrm{B}$. Find the values of a, b and c

Solution

$$
\begin{aligned}
& \mathrm{AB}=\left(\begin{array}{ll}
4 & 0 \\
0 & 5
\end{array}\right)\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \\
& \\
& =\left(\begin{array}{cc}
4 a+0 & 4 b+0 \\
0+0 & 0+5 c
\end{array}\right)=\left(\begin{array}{cc}
4 a & 4 b \\
0 & 5 c
\end{array}\right) \\
& \mathrm{A}+\mathrm{B}=\left(\begin{array}{ll}
4 & 0 \\
0 & 5
\end{array}\right)+\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)=\left(\begin{array}{cc}
4+a & b \\
o & 5+c
\end{array}\right) \\
& \mathrm{AB} \\
& \quad=\quad \mathrm{A}+\mathrm{B} \\
& \left(\begin{array}{ll}
4 a & 4 b \\
0 & 5 c
\end{array}\right)=\left(\begin{array}{cc}
4+a & b \\
0 & 5+c
\end{array}\right) \\
& \left.\begin{array}{l}
4 \mathrm{a}
\end{array}\right) \\
& \begin{array}{l}
4 \mathrm{a}-\mathrm{a}=4+\mathrm{a}
\end{array} \\
& \frac{3 a}{4}=\frac{4}{4} \quad \therefore \mathrm{a}= \\
& \begin{array}{l}
4 \mathrm{~b}
\end{array} \\
& 4 \mathrm{~b}-\mathrm{b}=0 \\
& \frac{3 b}{3}=\frac{3}{3} \\
& \therefore \quad \mathrm{~b}=0
\end{aligned}
$$

Question 7

If $A=\left(\begin{array}{cc}-1 & 5 \\ 2 & 3\end{array}\right)$ and $B=\left(\begin{array}{cc}6 & 0 \\ 4 & -8\end{array}\right)$
Find:-
a) 3 A
b) $\quad-2 \mathrm{~A}$
c) $\quad \frac{1}{2} \mathrm{~B}$
d) $\quad \mathrm{A}-3 \mathrm{~B}$

Solution

$$
\begin{aligned}
3 A & =3\left(\begin{array}{cc}
-1 & 5 \\
2 & 3
\end{array}\right) \\
& =\left(\begin{array}{cc}
3 \times(-1) & 3 \times 5 \\
3 \times 2 & 3 \times 3
\end{array}\right)=\left(\begin{array}{cc}
-3 & 15 \\
6 & 9
\end{array}\right)
\end{aligned}
$$

b) $\quad-2 \mathrm{~A}=-2\left(\begin{array}{cc}6 & 0 \\ 4 & -8\end{array}\right)$

$$
=\left(\begin{array}{cc}
-2 \times(-1) & 4 \times 5 \\
3 \times 2 & 3 \times 3
\end{array}\right)=\left(\begin{array}{cc}
2 & -10 \\
-4 & -6
\end{array}\right)
$$

c) $\quad \frac{1}{2} \mathrm{~B}$

$$
=\frac{1}{2}\left(\begin{array}{cc}
6 & 0 \\
4 & -8
\end{array}\right)
$$

$=\left(\begin{array}{ll}\frac{1}{2} \times 6 & \frac{1}{2} \times o \\ \frac{1}{2} \times 4 & \frac{1}{2}(-8)\end{array}\right)$

$$
=\left(\begin{array}{cc}
3 & 0 \\
2 & -4
\end{array}\right)
$$

d) $\mathrm{A}-3 \mathrm{~B}$

$$
\begin{aligned}
& =\left(\begin{array}{cc}
-1 & 5 \\
2 & 3
\end{array}\right)-3\left(\begin{array}{cc}
6 & 0 \\
4 & -8
\end{array}\right) \\
& =\left(\begin{array}{cc}
-3 & 5 \\
2 & 3
\end{array}\right)-\left(\begin{array}{cc}
18 & 0 \\
12 & -24
\end{array}\right) \\
& =\left(\begin{array}{cc}
-1-8 & 5-0 \\
2-12 & -3(-24)
\end{array}\right) \\
& =\left(\begin{array}{cc}
-19 & 0 \\
-10 & 27
\end{array}\right)
\end{aligned}
$$

Question 8

If $\mathrm{M}=\left(\begin{array}{cc}4 & -6 \\ -1 & 2\end{array}\right)$
a) Find the value of the determinant of M .
b) Hence write down the inverse of M

Solution

Turn-up College "O" Level Mathematics Questions and answers
a) Det of $\mathrm{M}=(2 \times 4)-(-6) \times(-1)$
$=8-6$
$=\quad 2$
b) Inverse of $\mathrm{M}=\frac{1}{2}\left(\begin{array}{ll}4 & 6 \\ 1 & 2\end{array}\right)=\left(\begin{array}{cc}2 & 3 \\ \frac{1}{2} & 1\end{array}\right)$

Question 9

The value of the determinant of the matrix $\left(\begin{array}{cc}5 & -2 \\ -4 & x\end{array}\right)$ is 7
a) Find the value of x
b) Hence write down the inverse of the matrix

Solution
a) $5 \times x-(-2) \times(-4)=7$

$$
5 x-8=7
$$

$$
\frac{5 x}{5}=\frac{15}{5}
$$

$$
\therefore \mathrm{x}=3
$$

b) Inverse of the matrix
$=\frac{1}{7}\left(\begin{array}{ll}3 & 2 \\ 4 & 5\end{array}\right)$

Question 10

Find the value of k for which the matrix $\left(\begin{array}{cc}4 & k-2 \\ 8 & 6\end{array}\right)$
Does not have an inverse

Solution

Note:

If the matrix does not have. An inverse, its determinant is equal to zero i.e $\operatorname{det}\left(\begin{array}{cc}4 & k-2 \\ 8 & 6\end{array}\right)=0$
Det:- $4 \times 6-8(k-2)=0$

$$
24-(8 k-16)=0
$$

$$
24-8 \mathrm{k}+16=0
$$

Turn-up College "O" Level Mathematics Questions and answers

$$
\begin{aligned}
& 24+16-8 \mathrm{k}=0 \\
& \frac{4 \theta}{8}=\frac{8}{8} k \\
& 5=\mathrm{k} \\
& \therefore \mathrm{k}=5
\end{aligned}
$$

Question 11

Find a and b if: $\quad\left(\begin{array}{cc}3 & 7 \\ b & a\end{array}\right)\left(\begin{array}{cc}a & -7 \\ -1 & 3\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad$ where $\mathrm{I}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is the identity matrix

Solution
$\left(\begin{array}{ll}3 & 7 \\ b & a\end{array}\right)\left(\begin{array}{cc}a & -7 \\ -1 & 3\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$\left(\begin{array}{cc}3 \times a+7 \times(-1) & 3 \times(-7)+(7 \times 3) \\ b \times a+(a \times(-1) & b \times(-7)+a \times 3\end{array}\right)=\mathrm{I}$
$=\left(\begin{array}{ll}3 a-14 & -2+21 \\ a b-2 a & -7+3 a\end{array}\right)=\mathrm{I}$
hence
but $\mathrm{I}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
then
$\left(\begin{array}{cc}3 a-14 & -2+21 \\ a b-2 a & -7+3 a\end{array}\right)=\mathrm{I}$
$3 \mathrm{a}-14=1$
$\frac{3 a}{3}=\frac{15}{3} \quad \therefore a=5$
$\mathrm{ab}-2 \mathrm{a}=0 \quad$ but $\quad \mathrm{a}=5$
$5 \times \mathrm{b}-2(5)=0$
$5 \mathrm{~b}-10=0$
$\frac{5 a}{5}=\frac{10}{5}$
$\therefore \quad \mathrm{a}=5$ and $\mathrm{b}=2$

Question 12

$\mathrm{A}=\left(\begin{array}{ll}4 & 2 \\ 0 & 3\end{array}\right) \quad \mathrm{B}=\left(\begin{array}{ll}\frac{1}{4} & k \\ 0 & \frac{1}{3}\end{array}\right)$ and
$C=\left(\begin{array}{cc}12 & 4 \\ -9 & M\end{array}\right)$
a) Evaluate A^{2}
b) Find the value of k which makes AB the identity matrix
c) Find the value of M which makes the determinant of A equal to the determinant of C .

Solution

a) $\quad A^{2}=\left(\begin{array}{ll}4 & 2 \\ 0 & 3\end{array}\right)\left(\begin{array}{ll}4 & 2 \\ 0 & 3\end{array}\right)$
c) $\operatorname{Det} \mathrm{A}=4 \times 3-2 \times 0$

$$
=12
$$

$=\left(\begin{array}{ll}4 \times 4+2 \times 0 & 4 \times 2+2 \times 3 \\ 0 \times 4+3 \times 0 & 0 \times 2+3 \times 3\end{array}\right)$
Det $\mathrm{C}=12 \times \mathrm{m}-4 \mathrm{x}(-9)$
then $\left(\begin{array}{cc}16+0 & 8+6 \\ 0+0 & 0+9\end{array}\right)=\left(\begin{array}{cc}16 & 14 \\ 0 & 9\end{array}\right)$
$=12 \mathrm{~m}+36$
hence $12 \mathrm{~m}+36=12$
$\therefore A^{2}=\left(\begin{array}{cc}16 & 14 \\ 0 & 9\end{array}\right)$
i.e. $m=-2$
b) $\mathrm{AB}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$\therefore\left(\begin{array}{ll}4 & 2 \\ 0 & 3\end{array}\right)\left(\begin{array}{cc}k & -k \\ 0 & \frac{1}{3}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
$=\left(\begin{array}{cc}4 \times \frac{1}{4}+2 \times 0 & 4 \times k+2 \times \frac{1}{3} \\ 0 \times \frac{1}{4}+0 \times 3 & 0 \times(-k)+3 \times \frac{1}{3}\end{array}\right)$
$=\left(\begin{array}{cc}1 & 4 k+\frac{2}{3} \\ 0 & 1\end{array}\right)$ then

$$
\begin{gathered}
\left(\begin{array}{cc}
1 & 4 k+\frac{2}{3} \\
0 & 1
\end{array}\right)=\mathrm{I} \text { i.e. } \\
\left(\begin{array}{cc}
1 & 4 k+\frac{2}{3} \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \\
4 \mathrm{k}+\frac{1}{3}=0 \\
\frac{4 k}{4}=\frac{2}{3} \times \frac{1}{4}-\therefore \mathrm{k}=\frac{1}{6}
\end{gathered}
$$

Question 13

$\mathrm{A}=\left(\begin{array}{ll}2 & 0 \\ 3 & 1\end{array}\right)$ and $\mathrm{B}=\left(\begin{array}{cc}1 & 2 \\ -2 & 3\end{array}\right)$
a) Find A + 2B
b) Given that $\mathrm{A}\binom{x}{2}=\binom{8}{27}$

Find The value of x and y

Solution

$$
\begin{aligned}
& \text { a) } \mathrm{A}+2 \mathrm{~B} \\
& =\left(\begin{array}{ll}
2 & 0 \\
3 & 1
\end{array}\right)+2\left(\begin{array}{cc}
1 & 2 \\
-2 & 3
\end{array}\right) \\
& \text { b) } \quad\left(\begin{array}{ll}
2 & 0 \\
3 & 1
\end{array}\right)\binom{x}{2}=\binom{8}{2 y} \\
& \binom{2 \times x+0 \times 2}{3 \times x+1 \times 2}=\binom{8}{2 y} \\
& =\left(\begin{array}{ll}
2 & 0 \\
3 & 1
\end{array}\right)+\left(\begin{array}{cc}
2 & 4 \\
-2 & 6
\end{array}\right) \\
& =\left(\begin{array}{cc}
2+2 & 0+2 \\
3+(-2) & 1+6
\end{array}\right) \\
& =\left(\begin{array}{ll}
4 & 4 \\
1 & 7
\end{array}\right) \\
& 2 \mathrm{x}=8 \\
& 3 x+2 y=8 \\
& \mathrm{x}=4 \\
& \text { hence } 3 \times 4+2=2 y \text { i.e. } \\
& 2 \mathrm{y}=14 \\
& \therefore \mathrm{y}=7
\end{aligned}
$$

Turn-up College "O" Level Mathematics Questions and answers

Question 14

Given that the value of the determinant of the matrix
$\left(\begin{array}{cc}x & -3 \\ -1 & 2\end{array}\right)$ is 5
Find the value of x and hence write down the inverse of the matrix

Solution

Det $x \times 2-(-3) \times(-1)=5$

$$
2 x-3=5
$$

$$
\frac{2 x}{2}=\frac{8}{2}
$$

$$
\therefore \mathrm{x}=4
$$

The matrix is $\quad\left(\begin{array}{cc}4 & -3 \\ -1 & 2\end{array}\right)$

The inverse $=\frac{1}{5}\left(\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right)$

Question 15

Find a, b, c, such that
$\left(\begin{array}{ll}a & b \\ 0 & 2\end{array}\right)\left(\begin{array}{cc}0 & 3 \\ 1 & -1\end{array}\right)=\left(\begin{array}{cc}1 & 9 \\ 5 & 0\end{array}\right)-\left(\begin{array}{cc}4 & -6 \\ 3 & 2 c\end{array}\right)$

Solution

$$
\begin{gathered}
\left(\begin{array}{cc}
a \times 0+b \times 1 & a \times 3+b \times(-1) \\
0 \times 0+2 \times 1 & 0 \times 3+2 \times(-1)
\end{array}\right)=\left(\begin{array}{cc}
1-4 & 9-(-6) \\
5-3 & 0-x
\end{array}\right) \\
\therefore\left(\begin{array}{cc}
b & 3 a-b \\
2 & -2
\end{array}\right)=\left(\begin{array}{cc}
-3 & 15 \\
2 & -2 c
\end{array}\right) \\
\text { hence } \quad \mathrm{b}=--3 \quad: 3 \mathrm{a}-\mathrm{b}=15 \\
-2=-2 \mathrm{c} \text { hence } \\
3 \mathrm{a}-(-3)=15 \\
3 \mathrm{a}=15-3
\end{gathered}
$$

$$
\begin{aligned}
& 3 \mathrm{a}=12 \\
& \frac{3 a}{3}=\frac{12}{3} \\
& \mathrm{a}=4 \\
& \mathrm{a}=4, \mathrm{~b}=-3 \text { and } \mathrm{c}=1
\end{aligned}
$$

CHAPTER 7

Formulae and Substitution

Question 1:

If $\mathrm{P}=3 x^{2}-4 x^{2}-4 x+2$ Find the value of P when $x=$:
a) -2
b) 0
c) 4

Solution

a) $\quad \mathrm{P}=3 x^{2}-4 x+2$
b) $\quad \mathrm{P}=3(0)^{2}-4(0)+2$
$\mathrm{P}=3(-2)^{2}-(4(-2)+2$
$\mathrm{P}=0-0+2$

Turn-up College "O" Level Mathematics Questions and answers

$$
\begin{array}{ll}
\mathrm{P}=12+8+2 & \\
\mathrm{P}=22 & \mathrm{P}=2
\end{array}
$$

c) $\quad \mathrm{P}=3(4)^{2}-4(4)+2$
$\mathrm{P}=48-16+2$
$\mathrm{P}=48+2-16$
$\mathrm{P}=34$

Question: 2

Given that $\mathrm{a}=5, \mathrm{~b}=-4$,
$\mathrm{C}=\frac{1}{2}, \mathrm{~d}=2, \mathrm{n}=-3$
Find the values of: -
a) $2 a b c-n^{2}$
b) $\quad 2 a^{2}-3 a b+b^{2}$
c) $\quad a^{d}-c^{b}$

Solution
a) $2 \mathrm{abc}-\mathrm{n}^{2}$

$$
\begin{aligned}
& =2 \times 5 \times(-4) \times \frac{1}{2}-(-3)^{2} \\
& =-20-9 \\
& =-29
\end{aligned}
$$

b) $\quad 2 a^{2}-3 a b+b^{2}$
$2\left(5^{2}\right)-3(5 x-4)+(-4)^{2}$
$50+60+16$
$=126$
c) $\quad a^{d}-c^{b}$
$=\quad 52-\left(\frac{1}{2}\right)^{-4}$
$=$ 25-16
$=\quad 9$

Question 3:

If $m=3, n=-4, c=-2$, and $d=-1$
Find The value of:
a) $\frac{c^{2}-n}{m}$
b) $\quad \frac{m d}{2 n}$
d) $3 m^{c}-4 d$

Solution
a) $\quad \frac{c^{2}-n}{m}=\frac{(-2)^{2}-(-4)}{3}$
b) $\quad \frac{m d}{2 n}=\frac{3 \times(-1)}{2 \times(-4)}$
$=\frac{4+4}{3}$

$$
=\frac{-3}{-8}
$$

$$
=\frac{8}{3}
$$

$$
=\frac{3}{8}
$$

c) $\quad 3 \mathrm{~m}^{\mathrm{c}}-4 \mathrm{~d}=3\left(3^{-2}\right)-4(-1)$

$$
\begin{aligned}
& =3\left(\frac{1}{9}\right)+4 \\
& =\frac{1}{3}+4 \\
& =4 \frac{1}{3}
\end{aligned}
$$

Question 4:

Make x the subject of the following equations:
a) $\frac{a}{x}+\mathrm{b}=\mathrm{c}$
b) $\quad m=\sqrt{\frac{1+x}{1-x}}$

Solution

a) $\frac{a}{x}+\mathrm{b}=\mathrm{c}$

$$
\text { i.e. } \frac{a+b x}{x}=c
$$

$$
\begin{array}{lrl}
\mathrm{a}+\mathrm{bx}=\mathrm{cx} & \text { b) } & m=\sqrt{\frac{1+x}{1-x}} \\
\mathrm{a}=\mathrm{cx}-\mathrm{bx} & \\
\mathrm{a}=\mathrm{x}(\mathrm{e}-\mathrm{b}) & \\
\frac{a}{c-b}=\frac{x(c-b)}{c-b} & m^{2}=\left(\sqrt{\frac{1+x}{1-x}}\right)^{2} \\
\frac{a}{c-b}=x & m^{2}=\frac{1+x}{1-x}
\end{array}
$$

$$
\therefore \frac{a}{c-b}=\mathrm{x}
$$

Question 5:

Make a the subject of the formulae.
$\mathrm{b}=\frac{1}{3} \quad \sqrt{ } \mathrm{x}^{2}-\mathrm{a}^{2}$

Solution

$\mathrm{b}=\frac{1}{3} \quad \sqrt{ } \mathrm{x}^{2}-\mathrm{a}^{2}$
$(3 b)^{2}=\left(\sqrt{\mathrm{x}^{2}-\mathrm{a}^{2}}\right)^{2}$
$9 b^{2}=x^{2}-a^{2}$
$\sqrt{\mathrm{a}^{2}}=\sqrt{ } \mathrm{x}^{2}-9 \mathrm{~b}^{2}$
$\mathrm{a}=\sqrt{ } \mathrm{x}^{2}-9 \mathrm{~b}^{2}$

$$
\begin{aligned}
& \mathrm{m}^{2}(1-\mathrm{x})=1+\mathrm{x} \\
& \mathrm{~m}^{2}-\mathrm{m}^{2} \mathrm{x}=1+\mathrm{x} \\
& \frac{m^{2}-1}{m^{2}+1}=\frac{x\left(m^{2}+1\right)}{m^{2}+1} \\
\therefore & x=\frac{m^{2}-1}{m^{2}+1}
\end{aligned}
$$

Question 6:

Make x the subject of

The Formulae, $\sqrt{ } x+3=W$
Solution

$$
\begin{aligned}
& (\sqrt{\mathrm{x}+3})^{2}=(\mathrm{W})^{2} \\
& x+3=W^{2} \\
& x=W^{2}-3
\end{aligned}
$$

Question 7:

Make N the subject of the formulae
$\sqrt{m+\frac{N}{2}} \quad=\mathrm{R}$

Solution

$\left(\sqrt{M+\frac{N}{2}}\right)^{2}=\mathrm{R}^{2}$
$\mathrm{M}+\frac{N}{2}=\mathrm{R}^{2}$
$2 \mathrm{M}+\mathrm{N}=2 \mathrm{R}^{2}$
$\mathrm{N}=2 \mathrm{R}^{2}-2 \mathrm{M}$
$\mathrm{N}=2\left(\mathrm{R}^{2}-\mathrm{M}\right)$

Question 8: Make P and M the subject of the formula

$$
\mathrm{M}^{2}+3 \mathrm{pq}=\mathrm{n}+\mathrm{p}
$$

Solution

$\overline{M^{2}+3 p q}=n+p$
$\mathrm{M}^{2}-\mathrm{n}=\mathrm{P}-3 \mathrm{pq}$
$\frac{M^{2}-n}{1-3 q}=\frac{p(1-3 q)}{1-3 q}$
$\therefore p=\frac{M^{2}-n}{1-3 q}:-$
$\mathrm{M}^{2}+3 \mathrm{pq}=\mathrm{n}+\mathrm{P}$
$\mathrm{M}^{2}=\mathrm{n}+\mathrm{p}-3 \mathrm{pq}$
$M=\sqrt{n+p-3 p q}$

Question 9:

The sum of the squares of the firsts S_{n} integers is given by:-

$$
S_{n}=\frac{n(n+1)(2 n+1)}{6}
$$

Calculate:-
a) $\quad S_{30}$
b) The sum of the squares from 31 to 50 inclusive Solution

$$
\begin{aligned}
& \text { a) } \quad S_{30} \text { means the value of } S_{n} \\
& \text { when } \mathrm{n}=30 \\
& S_{30}=\frac{30(03+1)(2 \times 30+1)}{6} \\
& =\frac{30 \times 31 \times 61}{6} \\
& =\frac{5673}{6} \\
& 6 \\
& =\underline{9455} \\
& S_{50}=\frac{50(50+1)(2 \times 50+1)}{6} \\
& =\frac{50 \times 51 \times 101}{6} \\
& =\quad \underline{42925}
\end{aligned}
$$

$$
\begin{aligned}
\therefore S_{50-}-S_{30} & =42925-9455 \\
& =\underline{33470}
\end{aligned}
$$

Question 10:

The volume V of A container which consists of a right cylinder base of radius r and height h surmounted by a hemisphere of the same radius is given by $V=x r^{2}\left(h+\frac{2}{3 r}\right)$
a) Make h in the subject of the formulae
b) Find h if V=359 $1 / 3 \mathrm{~m}^{3}, \mathrm{r}=3$

$$
-\pi=22
$$

Solution

$$
\begin{array}{rlrl}
V=x r^{2}\left(h+\frac{2}{3 r}\right) & \text { b) } \quad \therefore h & =\frac{3 V-2 \pi r^{3}}{3 \pi r^{2}} \\
& =\frac{3(1078)}{3}-\frac{2 \times 22}{7} \times \frac{7}{2} \times \frac{7}{2} \times \frac{7}{2} \\
\frac{V r^{2}}{}=h+\frac{2 r}{3} & & =\frac{1078-269,5}{115,5} \\
\frac{V}{\pi r^{2}}-h=\frac{2 r}{3} & & =\frac{808,5}{115,5} \\
\therefore h=\frac{3 V-2 \pi r^{3}}{3 \pi r^{2}} & & =7 \mathrm{~m}
\end{array}
$$

Question 11

The formula $\mathrm{F}=9 \mathrm{c}+32$ shows the relationship between temperature in degrees Fahrenheit (F) and degrees Celsius (c). Find
a) $\quad \mathrm{F}$ when $\mathrm{C}=80$
b) Make C the subject of the formulae
c) C when $\mathrm{F}=50$.

Solution

a) $\quad \mathrm{F}=\frac{9 c}{5}+32$
b) $\quad \mathrm{F}=\frac{9 c}{5}+32$

$$
\begin{array}{ll}
\mathrm{F}=\frac{9 \times 80}{5}+32 & 5 \mathrm{~F}=9 \mathrm{c}+32 \\
\mathrm{~F}=\frac{720}{5}+32 & \frac{5 F-160}{9}=\frac{9 c}{9} \\
\mathrm{~F}=144+32 & \therefore c=\frac{5 F-160}{9} \\
\mathrm{~F}=176 &
\end{array}
$$

c) $c=\frac{5 F-160}{9}$

$$
\mathrm{c}=\frac{5 \times 50-160}{9}
$$

$$
\mathrm{c}=\frac{250-160}{9}
$$

$$
\therefore c=\frac{90}{9}
$$

$$
\mathrm{c}=10
$$

Question 12:

Make U the subjects of the formulae:
$A=\frac{1}{2} M\left(V^{2}-U^{2}\right)$

Solution

$A=\frac{1}{2} M\left(V^{2}-U^{2}\right)$
$\frac{2 A}{M}=\frac{M\left(V^{2}-U^{2}\right)}{M}$
$U^{2}=V^{2}-\frac{2 A}{M}$
$\sqrt{U^{2}}=\sqrt{V^{2}-\frac{2 A}{M}}$
$\therefore U=\sqrt{V^{2}-\frac{2 A^{2}}{M}}$

Question 13:

Make x the subject of the formula in:-
a) $\quad a \sqrt{ } x=b$
b) $\sqrt{x^{2}+a^{2}}=3 a$

Solution

a) $\quad a \sqrt{ } x=b$

$$
(a \sqrt{x})^{2}=b^{2}
$$

$$
\therefore x=\frac{b^{2}}{a^{2}}
$$

b) $\quad\left(\left(\sqrt{x^{2}+a^{2}}\right)^{2}=(3 a)^{2}\right.$

$$
\begin{aligned}
& x^{2}+a^{2}=9 a^{2} \\
& x^{2}=9 a^{2}-a^{2} \\
& \sqrt{ } x^{2}=\sqrt{ } 8 a^{2} \\
& x=\sqrt{ } 8 x \sqrt{ } a^{2}
\end{aligned}
$$

Turn-up College "O" Level Mathematics Questions and answers

Question 14:

The period of a compound pendulum is given by:
$T=\frac{2 \pi \sqrt{h^{2}+y^{2}}}{b h}$ Express
y in terms of T, h and b taking π as 10 .

Solution

Tbh $=2 \pi \sqrt{x^{2}+y^{2}}$
$(T b h)^{2}=\left(2 \pi \sqrt{x^{2}+y^{2}}\right)^{2}$
$(T b h)^{2}=4 \pi^{2}\left(x^{2}+y^{2}\right)$
$\therefore y^{2}=\frac{T^{2} b^{2} h^{2}}{4 \pi^{2}}-x^{2}$
$\mathrm{y}=\sqrt{\frac{T^{2} b^{2} h^{2}}{4 \pi^{2}}-4 \pi^{2} h^{2}}$
$y=\frac{1}{40} \sqrt{T^{2} b^{2} h^{2}-400 h^{2}}$

Question 15: The formula
$\mathbf{A}=\mathbf{P}\left(\mathrm{I}+\frac{R T}{100}\right)$
gives the total money, A , that a a principal P , amounts to in T
years at $\mathrm{R} \%$ simple interest.
Find the amount that a principal of $\$ 1500$ becomes if invested for 10 years at $6 \frac{1}{2} \%$ simple interest per annum

Solution

$$
\begin{aligned}
A & =P\left(\mathrm{I}+\frac{R T}{100}\right) \\
& =1500\left(1+\frac{13 / 2 \times 10}{100}\right) \\
& =1500\left(1+\frac{13 \times 10}{100}\right) \\
& =1500\left(1+\frac{130}{100}\right) \\
& =1500\left(1+\frac{13}{20}\right)
\end{aligned}
$$

$$
=1500(1,65)
$$

$$
=\$ 2475
$$

P , amounts to in T years at $\mathrm{R} \%$ simple interest per annum. Find the amount that
principal of $\$ 1500$ becomes if invested for 10 years $6 \frac{1}{2} \%$ simple interest per annum.

Solution

$$
A=P\left(\frac{1+R T}{100}\right)
$$

Question 16: Find the value of

$$
\begin{aligned}
& 2 \pi \sqrt{\frac{l}{g}} \text { when } \pi=3 \frac{1}{7} \\
& 1=98 \text { and } g=32
\end{aligned}
$$

Solution

$$
\begin{aligned}
& \text { Hence } 2 \times \frac{22}{7} \sqrt{\frac{l}{g}} \\
& =\quad 2 \times \frac{22}{7} \times \sqrt{\frac{49}{16}} \\
& =\quad 2 \times \frac{22}{7} \times \frac{7}{4}=11
\end{aligned}
$$

Question 17

Given that $\mathrm{y}=2 \pi \mathrm{r}$,
a) Find y when $\pi=3,142$ and $\mathrm{r}=45$
b) Make r the subject of the subject of the formula, hence find r when $y=429$ and $x=3 \frac{1}{7}$

Solution

a) $y=2 \pi r$

$$
\mathrm{y} \quad=\quad 2 \times 3,142 \times 45 \quad \underline{\text { Question 18 }}
$$

$$
\mathrm{y}=\underline{282,78}
$$

a) Make M the subject of the formula $\frac{m}{a}+\frac{n}{b}=1$
b) $\begin{aligned} \mathrm{y} & =2 \pi \mathrm{r} \\ \mathrm{y} & =2 \pi \mathrm{r}\end{aligned}$

$$
\frac{y}{2 \pi}=\frac{2 \pi r}{2 \pi}
$$

b) Hence, if $\mathrm{a}=4, \mathrm{~b}=1$ and $\mathrm{n}=-2$, evaluate m .

Solution

$$
\begin{array}{lll}
\mathrm{r} & =\frac{y}{2 \pi} & \text { a) }
\end{array} \begin{array}{ll}
a \\
a & \frac{n}{b}=1 \\
\mathrm{r} & =\frac{y}{2 \pi}
\end{array} \frac{m b+a n}{a b}=1 .
$$

$$
\begin{array}{ll}
=429 \div \frac{44}{7} & \underline{\mathrm{mb}}=\mathrm{ab}-\underline{\mathrm{an}} \\
=429 \times \frac{7}{44} & \mathrm{mb}=\underline{\mathrm{ab}-\mathrm{an}} \\
=\frac{3003}{44} & \therefore \mathrm{~m}=\frac{a b-a n}{b} \\
=68,25 & \mathrm{~m}=\frac{a b-a n}{b} \\
& =\frac{4(1)-4(-2)}{1}=4+8=12
\end{array}
$$

Question 19

The length of the hypotenuse L in a right angled triangle is given by the formula $\mathrm{L}=\sqrt{x^{2}+y^{2}}$
where x and y are the lengths of the other two sides of the triangle.
a) Make x the subject of this formula
b) Hence find x if $L=68$ and $y=32$

Question 20

Solution

$$
\begin{aligned}
& \text { a) } \mathrm{L}=\sqrt{x^{2}+y^{2}} \\
& \therefore\left(L^{2}\right)=\left(x^{2}+y^{2}\right)^{2} \\
& \text { The simple interest } \mathrm{I} \text {, on a sum of money } \mathrm{P} \text { after } \mathrm{T} \text { years at. } \\
& \mathrm{R} \% \text { is given by the formula. } \\
& \begin{array}{r}
\text { The simple int } \\
\mathrm{R} \% \text { is give } \\
\mathrm{I}=\frac{P R T}{100}
\end{array} \\
& \mathrm{~L}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2} \\
& \mathrm{~L}^{2}-\mathrm{y}^{2}=\mathrm{x}^{2} \\
& \sqrt{x^{2}}=\sqrt{L^{2}-y^{2}} \\
& \therefore x=\sqrt{L^{2}-y^{2}} \\
& \mathrm{x}=\sqrt{68-32} \\
& \mathrm{x}=\sqrt{36} \\
& \therefore \quad \underline{x}=6 \\
& \text { a) Make } \mathrm{T} \text { the subject of the formula } \\
& \text { b) Find } \mathrm{T} \text { if } \mathrm{I}=102, \mathrm{P}=510 \text { and } \mathrm{R}=21 / 2 \\
& \text { Solution } \\
& \text { a) } \quad \mathrm{I}=\frac{P R T}{100} \\
& 100 \mathrm{I}=\mathrm{PRT} \\
& \therefore T=\frac{100 \mathrm{I}}{\mathrm{P} R}
\end{aligned}
$$

b) $\quad \therefore T=\frac{100 \mathrm{I}}{\mathrm{P} R}$

$$
\begin{aligned}
& \mathrm{T}=\frac{100 \times 102}{510 \times 5 / 2} \\
& =\frac{2 \times 100 \times 102}{510 \times 5} \\
& \therefore \mathrm{~T}=8 \text { years }
\end{aligned}
$$

CHAPTER 8

Pythagoras' Theorem and Trigonometrical Ratios

Question 1 Calculate the length of PQ
DIAGRAM

Solution

In \triangle	PRS:		In \triangle	PQS
$\mathrm{PR}^{2}=$	$\mathrm{PS}^{2}+\mathrm{SR}^{2}$	PQ^{2}	$=$	$\mathrm{PS}^{2}+5 \mathrm{Q}^{2}$
$\mathrm{PR}^{2}=$	$\mathrm{SR}^{2}=\mathrm{PS}^{2}$	$\mathrm{PQ}^{2}=$	$152+(8+12)^{2}$	
$\mathrm{PS}^{2}=$	$\mathrm{PR}^{2}-\mathrm{SR}^{2}$	$\mathrm{PQ}^{2}=$	$15^{2}+20^{2}$	
$\mathrm{PS}^{2}=$	$17^{2}-8^{2}$	$\mathrm{PQ}^{2}=$	$15^{2}+20^{2}$	
$\mathrm{PS}^{2}=$	$289-64$	$225+400$		
$\sqrt{P S^{2}}=$	$\sqrt{225}$	$\sqrt{P Q^{2}}=$	$\sqrt{625}$	
$\mathrm{PS}=$	15 m	$\therefore \mathrm{PQ}=$	25 m	

Question 2:

Find the length of the longest straight line which can be drawn on a rectangular chalkboard which measures 36 m by $2,2 \mathrm{~m}$

Solution

The longest straight line is the diagonal

Let the diagonal be x

$$
\begin{aligned}
& \mathrm{x}^{2}=(3,6)^{2}+(2,2)^{2} \\
& \mathrm{x}^{2} \quad=12,96+4,84 \\
& \sqrt{ } \mathrm{x}^{2} \quad=\sqrt{ } 17,8 \\
& \mathrm{x}=4,22 \mathrm{~m} \text { to } 2 . \text { d.p }
\end{aligned}
$$

Question 3:

A garden is square in shape and has an area of 4,8 hectares. Calculate:
a) The Length of a side in metres
b) The length of the diagonal in metres

Solution

a)	1 ha $=10000 \mathrm{~m}^{2}$		b)
Area of A square	$=$	$\mathrm{S} \times \mathrm{S}^{2}$	
$4,8 \times 10000$	$=$	S^{2}	
$\sqrt{ } 48000$	$=$	$\sqrt{ } \mathrm{S}^{2}$	
$\mathrm{~S}^{2}$	$=\sqrt{ } 48000$		
S	$=219,1 \mathrm{~m}$ to $1 . \mathrm{dp}$		

Let the diagonal $=\mathrm{y}$

$$
\begin{aligned}
& \mathrm{y}^{2}=\quad 219,1^{2}+219,1^{2} \\
& \mathrm{y}^{2}=8004,81+48004,81 \\
& \sqrt{ } \mathrm{y}^{2}= \\
& \mathrm{y}=309,9 \mathrm{~m} \text { to 1.d.p }
\end{aligned}
$$

Question 4:

A plane flies northwards for 390 m . It then flies eastwards for 285 km . How far is it from its starting point? (Neglect its height above the ground)

Solution

Turn-up College "O" Level Mathematics Questions and answers
$\mathrm{C}^{2}=390^{2}+285^{2}$
$\mathrm{C}^{2}=152100+81225$
$\sqrt{C^{2}}=\sqrt{233325}$
$\mathrm{C}=483 \mathrm{~km}$ to 3 S.F

Question 5

Sandra cycled from point A on a bearing of 060° for 13 km and Roy walked from the same point on a bearing of 150°, for 18 km . Find their distance apart.

Solution

A bearing is always measured clockwise from the north.
Diagram

Let x be their distance apart.
$x^{2}=13^{2}+18^{2}$
$\mathrm{x}^{2}=169+324$
$\sqrt{x^{2}}{ }^{2}=\sqrt{ } 493$
$\mathrm{x}=\underline{22,2 \mathrm{~km}}$ to $1 \mathrm{~d} . \mathrm{p}$

Question 6:

Roy walks 33m directly East then 17 m directly
North. How far is he from the starting point?

Solution

$\begin{aligned} \mathrm{b}^{2} & =33^{2}+17^{2} \\ \mathrm{~b}^{2} & =1089+289 \\ \sqrt{x^{2}} & =\sqrt{1378} \\ \mathrm{~b} & =37,1 \text { to 1d.p. }\end{aligned}$

Turn-up College "O" Level Mathematics Questions and answers

Question 7:

Calculate the lengths marked x
a)

b)

Solution

Use the SOHCAHTOA method
$\mathrm{SOH} \quad \Rightarrow \quad \sin \theta=\frac{o p p}{H y p}$
$\mathrm{CAH} \quad \Rightarrow \quad \operatorname{Cos} \theta=\frac{A d j}{H y p}$
$\mathrm{TOA} \quad \Rightarrow \quad \operatorname{Tan} \theta=\frac{o p p}{A d j}$
a)

Use the complement of $64^{0} 36^{1}$ which is $25^{0} 24^{1}$
b)

Turn-up College "O" Level Mathematics Questions and answers
$\operatorname{Tan} \theta=\quad \frac{o p p}{a d j}$
$\operatorname{Tan} 25^{0} 24^{1}=\underline{x}$
9
$9 x \operatorname{Tan} 25^{0} 24^{1}=x$
$9 \times 0,4748=\mathrm{x}$
$\mathrm{x}=4,27 \mathrm{~m}$ to 3 s.f
$\operatorname{Tan} \theta=\frac{o p p}{a d j}$
$\operatorname{Tan} 72,4^{0}=\frac{x}{25}$
$25 \mathrm{x} \operatorname{Tan} 72,4^{0}=\mathrm{x}$
$\mathrm{x}=25 \times 3,1524$
$\mathrm{x}=78,81$
$x=78,8 \mathrm{~m}$ to 3.3.f

Question 8

Calculate the angle marked α in the triangle below

Solution

$\operatorname{Tan} \alpha=\frac{o p p}{a d j}$
Tan $\alpha=\frac{5,5}{10,5}$
$\operatorname{Tan} \alpha=\quad 0,5238$
From the tables $\alpha=27^{0} 39^{1}$

Question 9:

Calculate the angles marked θ and α below

θ

$5 m$

Solution

Tan $\theta=\frac{12}{5}$

Tan $\theta=2,4000$
From tables $\theta=67^{0} 23^{1}$

$$
\begin{array}{ll}
& \alpha=90^{0}-67^{0} 23^{1} \\
& \text { but } 90^{0}=89^{0} 60^{1} \\
& 89^{0} 60^{1} \\
\therefore \quad & \frac{-67^{0} 23^{1}}{\alpha=22^{0} 37^{1}}
\end{array}
$$

Question: 10

From a point 19 m from the foot, a man observes the angle of elevation of the top of the building to be 440 . Find the height of the building.

Solution

Let the height of the building be y.

Question 11:

$\operatorname{Tan} \theta=\frac{o p p}{a d j}$
Find the angle of elevation of the top of a
flag pole $27,4 \mathrm{~m}$ high from a point 39 m away of level ground.
$\operatorname{Tan} 44^{\circ}=-\frac{y}{19}$
Solution

39m
$\operatorname{Tan} \alpha=\frac{o p p}{a d j}$
Tan $\alpha=\frac{27.4}{39}$
Tan $\alpha=0,7026$
From tables $\alpha=35^{\circ} 5^{\prime}$

Question 12

Find the value of a in the triangles below:
b)

Solution

SOHCAHTOA

a) $\operatorname{Sin} \theta=\underline{\text { OPP }}$
$\operatorname{Sin} 25^{\circ}=\quad \underline{a}$

Question 13:
Find the value of the marked side and give your answers to 3 S.F.
a)

Solution
a) $\quad \operatorname{Cos} 63^{0} 18^{1}=\frac{p}{7}$
$7 \times \operatorname{Cos} 63^{\circ} 18^{1}=P$
$\mathrm{P}=7 \times \operatorname{Cos} 63^{0} 18^{1}$
$\mathrm{P}=7 \times 0,4493$
$\mathrm{P}=3,1451$
$\mathrm{P}=3,15 \mathrm{~km}$
b) $\quad \operatorname{Sin} 33^{0} 42^{1}=\underline{b}$
$6 \times \operatorname{Sin} 33^{0} 42^{1}=\mathrm{b}$
$b=6 \times \operatorname{Sin} 33^{0} 42^{1}$
$\mathrm{b}=6 \times 0,5548$
$\mathrm{b}=3,3288$
$\mathrm{b}=3,33 \mathrm{~cm}$
Turn-up College "O" Level Mathematics Questions and answers

Question 14

A ladder 9 m long, leans against a wall so that, it makes an angle of 73° with the horizontal ground. Calculate how far up the wall the ladder reaches.

Solution

$\operatorname{Sin} 73^{0}$	$=\frac{\mathrm{W}}{9}$
$9 \times \operatorname{Sin} 73^{0}$	$=\mathrm{W}$
W	$=9 \times 0,9563$
W	$=8,6067$
W	$=\underline{8,61 \mathrm{~m} \text { to 3.s.f }}$

Question 15

A diagonal of a square id 35 cm long. How long is each side?
Solution

Question 16

Calculate the marked angle \ominus and give your answer to the nearest $0,1^{0}$

Solution
$\operatorname{Sin} \ominus=\quad \underline{\text { OPP }}$
Нур
$\operatorname{Sin} \ominus=\underline{3}$
12
$\operatorname{Sin} \theta=0,2500$
$\theta=14^{0} 29^{1}$

Question 17

Calculate the length of the hypotenuse.

Solution

$$
\begin{array}{rlr}
\operatorname{Sin} 42^{0}=\frac{6}{x} & \text { from the reciprocal Tables } \\
\frac{x \times \sin 42^{\circ}}{\sin 42^{\circ}}=\frac{1}{0,6691}=1,506 \\
\sin 42^{\circ} & \therefore \mathrm{x}=1,506 \times 6 \\
\mathrm{x}=9,036 \\
=\frac{6}{0,6691} & \underline{x}=9 \mathrm{~m}
\end{array}
$$

Question 18

Calculate the length of the hypotenuse

Solution

$\operatorname{Cos} 76^{\circ} \quad=\quad \frac{7}{h}$
$\frac{\mathrm{hx} \mathrm{\operatorname{Cos} 76}^{\theta}}{\operatorname{Cos} 76^{\theta}}=\quad \frac{7}{\operatorname{Cos} 76^{\circ}}$
$\mathrm{h}=\frac{7}{0,2419}$

From the reciprocal tables
1
$0,2419=4,133$
$\mathrm{h} \quad=\quad 4,133 \times 7$
$\mathrm{h}=28,931$
$:-\mathrm{h} \quad=\quad 28,9 \mathrm{~m}$

Question 19

A ball rolls 230 m down a slope.
As it falls, it drops 95 m vertically Calculate the angle of the slope.

Solution

$\operatorname{Sin} \alpha=\quad \underline{95}$
230
$\operatorname{Sin} \alpha=0,4130$

From tables $\propto=\underline{24^{0} 23^{1}}$

Question 20

A brick is suspended from a point Q by a piece of string 75 cm long. It swings back and forward. Calculate the angle the string makes with the vertical side when the brick is 30 cm vertically below Q .

Solution

$\overline{\cos \theta}=30 \mathrm{~cm}$ 75 cm
$\operatorname{Cos} \theta=0,4000$
From tables $\theta=66^{0} 25^{1}$
Turn-up College "O" Level Mathematics Questions and answers

Question 21

An aeroplane is flying at a height of 20 km . Its angle of elevation to a man on the ground is 49°. Calculate the distance of the aeroplane from the man.

Solution

$\operatorname{Sin} 49^{\circ}=\frac{20}{\mathrm{~h}}$
$\mathrm{h} x \operatorname{Sin} 49^{\circ}=20$
$\mathrm{h}=\quad \underline{20}$
Sin 490
$\mathrm{h}=\quad \underline{20}$
0,7547
From reciprocal Tables:-
1
$0,7547=\quad 1,325$
$\mathrm{h}=\quad 20 \times 1,325$
$\mathrm{h}=\quad 26,5 \mathrm{~km}$

CHAPTER 9

Vectors

A vector is any quantity which has direction and size e.g force velocity acceleration, velocity, displacement and force

Question 1:

Find the magnitudes of the following vectors
a) $\binom{4}{3}$
b) $\quad\binom{0}{-2}$
c) $\quad\binom{15}{-8}$

Turn-up College "O" Level Mathematics Questions and answers

Solution

NB: \quad Magnitude of $\mathbf{a}=|a|$ and $|a|=\sqrt{x^{2}+y^{2}}$

$$
\text { a) } \begin{aligned}
& \sqrt{(-4)^{2}+3^{2}} \\
= & \sqrt{9+16} \\
= & \sqrt{25} \\
= & 5 \text { units }
\end{aligned}
$$

b) $\sqrt{0^{2}+(-2)^{2}}$
c) $\sqrt{(15)^{2}+(-8)^{2}}$
$=\sqrt{0^{2}+4}$
$=\sqrt{225+64}$
$=\sqrt{ } 4$
$=\sqrt{289}$
$=2$ units
$=\underline{17 \text { units }}$

Question 2

If $\mathrm{P} \quad \mathbf{p}=\binom{5}{-2}, \quad \mathbf{q}=\binom{2}{6} \operatorname{and} \mathbf{r}=\binom{-3}{-2}$
Find
a) $\mathbf{p}+\mathbf{r}$
b) $\mathbf{p}-\mathbf{r}$
c) $\quad|r|$ to $1 \mathrm{~d} . \mathrm{p}$
d) $\quad(\mathbf{p}-\mathbf{q})-\mathbf{r}$

Solution

a) $\mathbf{p}+\mathbf{r}=\binom{5}{-2}+\binom{-3}{-7}$

$$
=\binom{5+(-3)}{-2+(-7)}=\binom{2}{-9}
$$

b) $\quad \begin{aligned} \mathbf{p}-\mathbf{r}= & \binom{5}{-2}-\binom{--3}{-7} \\ & =\binom{5-(-3)}{-2-(-7)}=\binom{8}{5}\end{aligned}$

$$
\begin{aligned}
& \quad|r|=\sqrt{(-3)^{2}+(-7)^{2}} \\
& \text { c) } \quad=\sqrt{9+49} \\
& =\sqrt{58} \\
& =7,6
\end{aligned}
$$

d) $\quad(\mathbf{p}-\mathbf{q})-\mathbf{r}=$

$$
\binom{5}{-2}-\binom{-2}{6}-\binom{-3}{-7}
$$

$$
=\binom{3}{-8}-\binom{-3}{-7}
$$

$$
=\binom{6}{-1}
$$

Question 3:

If $\mathrm{a}=\binom{3}{4}$ and $\mathrm{b}=\binom{-2}{5}$
State $\mathrm{a}+\mathrm{b}, 3 \mathrm{~b}-\mathrm{a}$ as column vectors
And find $|a+b|$

Solution

$\mathbf{a}+\mathbf{b}=$
$\binom{3}{4}+\binom{-2}{5}$
$=\binom{3+(-2)}{4+5}$
$=\binom{1}{9}$
$3 \mathrm{~b}-\mathbf{a}=$

$$
\begin{aligned}
& 3\binom{-2}{5}-\binom{3}{4} \\
& =\binom{-6}{15}-\binom{3}{4} \\
& =\binom{-6-3}{15-4} \\
& =\binom{-9}{11} \\
& \begin{aligned}
|a+b| & = \\
& =\sqrt{1^{2}+9^{2}} \\
& =\sqrt{1+81} \\
& \sqrt{82}
\end{aligned}
\end{aligned}
$$

Question 4:

Given that $\overrightarrow{O P}=\mathbf{p}, \overrightarrow{O Q}=\mathbf{q}$
$\overrightarrow{O S}=\frac{2}{3} \overrightarrow{O P}$ and $\overrightarrow{O R}=\frac{3}{5} \overrightarrow{O Q}$

Find $\overrightarrow{R S}, \overrightarrow{P R}$ and $\overrightarrow{Q S}$ in terms of \mathbf{p} and \mathbf{q}.
Solution

Turn-up College"O" Levet Mathematics Questions and answers $\rightarrow \quad \rightarrow \quad \rightarrow$
q

0
X

$$
\begin{aligned}
\overrightarrow{R S}=\overrightarrow{R Q}+\overrightarrow{O S} & =\overrightarrow{R O}+\overrightarrow{O S} \\
& =-\frac{3}{5} \mathrm{q}+\frac{2}{3} \mathrm{p} \\
& =\frac{2 p}{3}-\frac{-3 q}{5}
\end{aligned}
$$

$$
\begin{aligned}
\overrightarrow{P R}= & \overrightarrow{P O}+\overrightarrow{O R} \\
& =-\mathbf{p} \quad+\frac{3}{5} \overrightarrow{O Q} \\
& =\quad-\mathrm{p}+\frac{3}{5} \mathrm{q} \\
& =\quad \frac{3}{5} \mathbf{q}-\mathbf{p}
\end{aligned}
$$

Question 5

Given that
$\mathbf{a}=\binom{4}{6}, \mathbf{b}=\binom{-6}{4}$ and
$\mathbf{c}=\binom{18}{14}$
i) Find the vector \mathbf{m} such that $4 \mathbf{b}-2 \mathbf{a}=\mathbf{m}$.
ii) If $x \mathbf{a}=\mathrm{yb}+\mathbf{c}$. Find the values of x and y .

Solution

i) $\quad \mathbf{m}=\quad 4 b-2 a$

$$
=4\binom{-4}{6}-2\binom{4}{6}
$$

$$
=\binom{-24}{16}-\binom{8}{12}
$$

$$
=\binom{-32}{4}
$$

$\therefore \quad \mathbf{m}=\binom{-32}{4}$
ii) $x\binom{4}{6}=y\binom{-6}{4}+\binom{14}{18} \quad 4 x=-6 y+18$

$$
\begin{equation*}
6 x=4 y+14 \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\binom{4 x}{6 x}=\binom{6 y+18}{4 y+14} \tag{ii}
\end{equation*}
$$

$$
4 x+6 y=18(1) x 4
$$

$$
6 x-4 y=14(2) x 6
$$

$$
\begin{aligned}
& 16 x+24 y=72 \\
& 36 x-24 y=84)
\end{aligned}
$$

$\frac{52 x}{52}=\frac{156}{52}$
$\underline{x=3}$
From (1) $\quad 4(3)+6 y=18$

Turn-up College "O" Level Mathematics Questions and answers

$$
\begin{array}{r}
12+6 y=18 \\
6 y=18-12 \\
\frac{6 y}{\frac{6}{1}}=\frac{\frac{1}{6}}{\frac{6}{1}} \\
y=1 \\
\therefore \quad x=3 \text { and } y=1
\end{array}
$$

Question 6

In the triangle $A B C, M$ Divides the line $A B$ in the Ratio $A M: M B=5: 3$
If $\overrightarrow{C A}=\mathbf{p}$ and $\overrightarrow{C B}=\mathbf{q}$, Express $\overrightarrow{C M}$ in terms of \mathbf{p} and \mathbf{q}.

Solution

$$
\begin{aligned}
\overrightarrow{A B}= & \overrightarrow{A C}+\overrightarrow{C B} \\
& =-\mathbf{p}+\mathbf{q} \\
& =\mathbf{q}-\mathbf{p}
\end{aligned}
$$

$\overrightarrow{A M}=\frac{5}{8} \overrightarrow{A B}$

Question 7

$$
=\quad \frac{5}{8}(\mathbf{q}-\mathbf{p})
$$

$\overrightarrow{C M}=\overrightarrow{C A}+\overrightarrow{A M}$

Turn-up College "O" Level Mathematics Questi申ns and answers

$$
\begin{aligned}
& =\mathbf{p}+\frac{5}{8}(\mathbf{q}-\mathbf{p}) \\
& =\mathbf{p}+\frac{5}{8}(\mathbf{q}-\mathbf{p}) \\
\therefore \frac{3}{8} \mathbf{p} & +\frac{5}{8} \mathbf{q}
\end{aligned}
$$

X and Y are mid-points of OR and RQ respectively. It is given that $\overrightarrow{O P}=, \mathbf{p}$
$\overrightarrow{P Q}=\mathbf{q}$ and $\overrightarrow{P R}=2 \mathbf{p}$. Express in terms of \mathbf{p} and \mathbf{q}.
a) $\quad \overrightarrow{O R}$
b) $\quad \overrightarrow{R Q}$
c) $\quad \overrightarrow{X Y}$

Solution 7

a) $\quad \overrightarrow{O R}=\overrightarrow{O P}+\overrightarrow{P R}$

$$
\begin{array}{ll}
= & \mathbf{p}+2 \mathbf{p}-\mathbf{q} \\
= & 3 \mathbf{p}-\mathbf{q}
\end{array}
$$

b) $\quad \overrightarrow{R Q}=\overrightarrow{R P}+\overrightarrow{P Q}$

$$
\begin{array}{ll}
= & -(2 \mathbf{p}-\mathbf{q})+\mathbf{q} \\
= & -2 \mathbf{p}+\mathbf{q}+\mathbf{q} \\
= & -2 \mathbf{p}+2 \mathbf{q} \\
= & 2 \mathbf{q}-2 \mathbf{p} \\
= & \underline{2(\mathbf{q}-\mathbf{p})}
\end{array}
$$

c) $\quad \overrightarrow{X Y}=\overrightarrow{X R}+\overrightarrow{R Y}$

$$
\begin{aligned}
& =\frac{1}{2} \overrightarrow{O R}+\frac{1}{2} \overrightarrow{R Q} \\
& =\frac{1}{2}(3 \mathbf{p}-\mathbf{q})+\frac{1}{2}(2 \mathbf{q}-2 \mathbf{p}) \\
& =\frac{3}{2} \mathbf{p}-\mathbf{q}+\mathbf{q}-\mathbf{p} \\
& =\frac{1}{2} \mathbf{p}+\frac{1}{2} \mathbf{q} \\
\therefore \quad \overrightarrow{X Y} & =\frac{1}{2}(\mathbf{p}+\mathbf{q})
\end{aligned}
$$

Question 8:

A (-2,-1), B (0;2) C, D (4;2)
are vertices of a quadrilateral. Find the co-ordinates of C such that ABCD is a parallelogram. Find the coordinates of the point of intersection of its diagonals.

Solution

Since $A B C D$ is a parallelogram then $B D \square A C$ and $A B \square C D$
Let the co-ordinates of C be (x, y)

$$
\overrightarrow{B D}=\overrightarrow{A C}
$$

i.e $\binom{4}{2}-\binom{0}{2}=\binom{x}{y}-\binom{-2}{-1}$
$\binom{4}{0}=\binom{x+2}{y+1}$
$\mathrm{x}+2=4$
$y+1=0$
i.e. $x=2$ and $y=-1$

The co-ordinates of C are $(2 ; 1)$
Mid- point $=\left(\frac{4-2}{2} ; \frac{2+1}{2}\right)=(1 ; 0,5)$

In the diagram above $\overrightarrow{P R}=\mathbf{b}, \overrightarrow{P Q}=\mathbf{a}$ and M and N are midpoints of PQ and RQ respectively PX: $\mathrm{XN}=4: 3$, Express the following in terms of a and b.
a)
$\overrightarrow{Q R}$
b)
$\overrightarrow{Q N}$
c) $\quad \overrightarrow{P N}$
d) $\quad \overrightarrow{P X}$

Solution

a) $\quad \overrightarrow{Q R}=\overrightarrow{Q P}+\overrightarrow{P R}$
d) $\overrightarrow{P X}=\frac{4}{7} \overrightarrow{P N}$

$$
=\frac{4}{7}\left(\frac{3}{2} \mathbf{a}-\frac{1}{2} \mathbf{b}\right)
$$

$=\mathbf{b}-\mathbf{a}$

$$
=\frac{12}{14} \mathbf{a}-\frac{4}{14} \mathbf{b}
$$

b) $\quad \overrightarrow{Q N}=\frac{1}{2} \overrightarrow{R Q}$

$$
=\frac{1}{2}(\mathbf{a}-\mathbf{b})
$$

c) $\quad \overrightarrow{P N}=\overrightarrow{P Q}+\overrightarrow{Q N}$

$$
\begin{aligned}
& =\mathbf{a}+\frac{1}{2}(\mathbf{a}-\mathbf{b}) \\
& =\mathbf{a}+\frac{1}{2} \mathbf{a}-\frac{1}{2} \mathbf{b} \\
& =\frac{3}{2} \mathbf{a}-\frac{1}{2} \mathbf{b}
\end{aligned}
$$

CHAPTER 10

FACTORISATION AND SIMPLIFICATION

Question 1:

Factorise completely
a) $y^{2}-12 y+27$
b) $\quad l m-m n-2 l p+2 n p$

Solution 1

a) $y^{2}-12 y+27$
$=\quad y^{2}-3 y-9 y+27$
$=y(y-3)-9(y-3)$
$=\quad(y-9)(y-3)$
b) $\quad 1 m-m n-2 l p+2 n p$ $m(1-n)-2 p(1-n)$
(m-2p) (1-n)

Question 2:

Factorise completely:
a) $3 m p+n p-6 m q-2 n q$
b) $\quad 16-9 r^{2}$

Solution 2

a) $3 m p+n p-6 m q-2 n q$
b) $\quad 16-\mathrm{qr}^{2}$
$=p(3 m+n)-2 q(3 m+n)$
Difference of Two Squares.
$=(\mathrm{p}-2 \mathrm{q})(3 \mathrm{~m}+\mathrm{n})$

$$
\begin{aligned}
& \quad a^{2}-b^{2}=(a+b)(a-b) \\
& \text { hence } 16-9 r^{2}=(4+3 r)(4-3 r)
\end{aligned}
$$

Question 3

Factorise completely
a) $\quad a b^{2}-b c$
b) $6 x^{2}+25 x-9$
$5 x^{2}-45 y^{2}$
a) $\mathrm{ab}^{2}-\mathrm{bc}$
$b(a b-c)=b(a b-c)$
b) $6 x^{2}+25 x-9$

Turn-up College "O" Level Mathematics Questions and answers
$=6 x^{2}-2 x+27 x-9$
$=2 x(3 x-1)+9(3 x-1)$
$=(2 x+9)(3 x-1)$

Question 4

Factorise completely
$5 x^{2}-45 y^{2}$

Solution

$5\left(x^{2}-9 y\right)^{2} \quad$ DIFFERENT OF TWO SQUARES
$5 x^{2}-45 y^{2}=5\left(x^{2}-9 y^{2}\right)$

$$
=5(x-3 y)(x+3 y)
$$

Question 5

Factorise completely
a) $4 m^{2}-m n-4 d m+n d$
b) $9-36 h^{2}$

Solution

a) $4 m^{2}-m n-4 d m+n d$

$$
\begin{aligned}
& =4 \mathrm{~m}(\mathrm{~m}-\mathrm{d})-\mathrm{n}(\mathrm{~m}-\mathrm{d}) \\
& =(4 \mathrm{~m}-\mathrm{d})(\mathrm{m}-\mathrm{d}) \\
& =9-36 \mathrm{~h}^{2} \\
& =9\left(1-4 \mathrm{~h}^{2}\right) \\
& =9(1+2 \mathrm{~h})(1-2 \mathrm{~h})
\end{aligned}
$$

Question 6

Factorise completely
a) $30-y-y^{2}$
b) $\quad 8 a^{2}-5 a b^{2}$

Solution 6

Question 7:

Factorise completely
$y^{2}+p y-q y-p q$
Solution 7

$$
\begin{aligned}
& y^{2}+p y-q y-p q \\
= & y(y+p)-q(y+p) \\
= & (y-q)(y+p)
\end{aligned}
$$

b) $30-y-y^{2}$
$=30-6 y+5 y-y^{2}$
$=6(5-y)+y(5-y)$
$=(6+y)(5-y)$
b) $\quad 8 a^{2}-50 b^{2}$
$=\quad 24 a^{2}-25 b^{2}$
Difference of two squares
$=2(2 a+5 b)(2 a-5 b)$
Question 8: Factorise Completely
a) $\mathrm{mn}-\mathrm{n}^{2}+\mathrm{np}-\mathrm{mp}$
b) $2 x^{2} y^{2}+7 x y-15$

Solution 8

a) $m n-n^{2}+n p-m p$
$=\quad m n-n^{2}-m p+n p$
$=n(m-n)-p(m-n)$
$=\quad(\mathrm{n}-\mathrm{p})(\mathrm{m}-\mathrm{n})$
b) $\quad 2 x^{2} y^{2}+7 x y-15$
$2 x y^{2}+10 x y-3 x y-15$
$2 x \mathrm{y}(x \mathrm{y}+5)-3(x \mathrm{y}+5)$
$(2 x y-3)(x y+5)$

Question 9:

Factorise completely
a) $\quad 2 \mathrm{pq}^{2}-4 \mathrm{p}^{2} \mathrm{q}$
b) $\quad x^{2}-6 x+9$

Solution 9

a) $\quad 2 p q^{2}-4 p^{2} q$
b) $\quad x^{2}-6 x+9$
$=\quad 2 \mathrm{pq}(\mathrm{q}-2 \mathrm{p})$
$=x^{2}-3 x-3 x+9$
$=\quad x(x-3)-3(x-3)$
$=(x-3)(x-3)$
$=(x-3)^{2}$

Question 10

Factorise completely
a) $\quad x^{2}+2 x y-8 y^{2}$
b) $\quad \mathrm{P}^{2}+4 \mathrm{pq}-21 \mathrm{q}^{2}$
b) $\quad \mathrm{p}^{2}+4 \mathrm{pq}-21 \mathrm{q}^{2}$
$=\quad p^{2}+7 p q-3 p q-21 q^{2}$
$=p(p+7 q)-3(p+7 q)$
$=\quad(p-3 q)(p+7 q)$

Solution 10

a) $\quad x^{2}+2 x y-8 y^{2}$
$=x^{2}+4 x y-2 x y-8 y 2$
$=x(x+4 y)-2 \mathrm{y}(x+4 \mathrm{y})$
$=(x-2 \mathrm{y})(x+4 \mathrm{y})$

Question11:

Simplify
a) $\frac{a}{2}+\frac{2 a}{3}+\frac{a}{4}$
b) $\frac{a-1}{3}-\frac{a-3}{4}$

Solution 11

a) $\frac{a}{2}+\frac{2 a}{3}+\frac{a}{4}$
b) $\frac{a-1}{3}-\frac{a-3}{4}$

Find the L.C.M of 2, 3 and 4
$\frac{a}{2}+\frac{2 a}{3}+\frac{a}{4}=$
L.C.M of 3 and 4 is 12

$$
\begin{aligned}
& \frac{4(a-1)-3(a-3)}{12} \\
& =\frac{4 a-4-3 a+9}{12} \\
& =\frac{a+5}{12}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{6 a+8 a+3 a}{12} \\
& =\frac{17 a}{12}
\end{aligned}
$$

Question 12:

Simplify
a) $\frac{x^{2}-4 x y+3 y^{2}}{x^{2}-y^{2}}$
b) $\frac{2}{x^{2}-x-2}-\frac{4}{x-2}+\frac{6}{x+1}$

Solution 12

a) $\frac{x^{2}-4 x y+3 y^{2}}{x^{2}-y^{2}}$

NB: Factorise the numerator and the denominator first

$$
\begin{aligned}
& \frac{x^{2}-4 x y+3 y^{2}}{x^{2}-y^{2}} \\
- & =\frac{(x-3 y)(x-y)}{(x+y(x-y)} \\
= & \frac{x-3 y}{x+y} \\
\text { b) } & \frac{2}{x^{2}-x-2}-\frac{4}{x-2}+\frac{6}{x+1}
\end{aligned}
$$

Factorise $x^{2}-x-2$ First find the L.C.M. of Denominators

$$
\begin{aligned}
& x^{2}-x-2=(x+1)(x-2) \\
& \frac{2}{(x+1)(x-2)}-\frac{4}{x-2}+\frac{6}{x+1} \\
& =\frac{2-4(x+1)+6(x-2)}{(x+1)(x-2)} \\
& =\frac{2-4 x-4+6 x-12}{(x-2)(x+1)} \\
& \frac{2 x-14}{(x-2)(x+1)}
\end{aligned}
$$

Question 13

Simplify

a) $\frac{m n-n^{2}}{(m-n)^{2}}$
b) $\frac{a^{2}-a b-a c+b c}{a^{2}-a b+a c-b c}$

Solution 13

a) $\frac{m n-n^{2}}{(m-n)^{2}}$
b) $\frac{a^{2}-a b-a c+b c}{a^{2}-a b+a c-b c}$
$=\frac{n(m-n)}{(m-n)^{2}}$
$=\frac{a^{2}-a b-a c+b c}{a^{2}-a b+a c+b c}$
$=\frac{n}{m-n}$

$$
=\frac{(a-b)(a-c)}{(a+c)(a-b)}
$$

$$
=\frac{a-c}{a+c}
$$

Question 14

Express as a single fraction in its lowest terms.
a) $\frac{1}{m}-\frac{2}{m+3}$
b) $n+\frac{2 n}{n+5}$

Solution

a) $\frac{1}{m}-\frac{2}{m+3}$
L.C. $M=m(m+3)$
b) $n+\frac{2 n}{n+5}$

$$
\text { hence } \begin{aligned}
\frac{1}{m}-\frac{2}{m+3} & =\frac{m+3-m(m+3)}{m(m+3)} & & =\frac{n(6 n+5)+2 n}{6 n+5} \\
& =\frac{m+3-2 m}{m(m+3)} & & =\frac{6 n^{2}+5 n+2 n}{6 n+5} \\
& =\frac{3-m}{m(m+3)} & & =\frac{6 n^{2}+7 n}{6 n+5}
\end{aligned}
$$

Question 15

Simplify
$\frac{a+1}{a^{2}-7 a+12} \times \frac{8-a}{a^{2}+2 a+1}$

Solution 15
Factorise the denominators first.
$\frac{a^{2}-7 a+12}{=} \quad a^{2}-4 a-3 a+12$
$=a(a-4)-3(a-4)$
$=(a-3)(a-4)$
$a^{2}+2 a+1=a^{2}+a+a+1$

$$
=a(a+1)+1(a+1)
$$

$$
=\quad(a+1)^{2}
$$

Hence

$$
\begin{aligned}
& =\frac{a+1}{(a-3)(a-4)} \times \frac{8-2 a}{(a+1)^{2}} \\
& =\frac{a+1}{(a-3)(a-4)} \times \frac{2(4-a)}{(a+2)^{2}} \\
& =\frac{a+1}{(a-3)(a-4)} \times \frac{(-2)(a-4)}{(a+1)(a+1)} \\
& =\frac{a+1}{(a-4)(a-3)} \times \frac{(-2)(a-4)}{(a+1)(a+4)} \\
& =\frac{-2}{(a-3)(a+1)}
\end{aligned}
$$

Question 16:

Simplify
$\frac{2 x^{2}-8}{15 x^{2} y} \times \frac{9 x^{2} y^{2}}{3 x+6}$

Solution16

$$
\frac{2 x^{2}-8}{15 x^{2} y} \times \frac{9 x^{2} y^{2}}{3 x+6}=\frac{2\left(x^{2}-4\right)}{15 x^{2} y} \times \frac{9 x^{3} y^{2}}{3 x+6}
$$

$$
\begin{aligned}
& =-\frac{2(x+2)(x-2)}{15 x^{2} y} \times \frac{9 x^{2} y}{3(x+2)} \\
& =\frac{2(x-2)}{5} \times 2 y \\
& =\frac{2 x y(x-2)}{5} \\
& =\frac{2 x^{2} y-4}{5}
\end{aligned}
$$

Question 17

Simplify
$\frac{x^{2}-16}{x^{2}-x} \times \frac{x^{2}-3 x+2}{x^{2}+2 x-8}$

Solution 17

$$
\begin{aligned}
& \frac{x^{2}-16}{x^{2}-x} \times \frac{x^{2}-3 x+2}{x^{2}+2 x-8} \\
= & \frac{(x-4)(x+4)}{x(x-1)} \times \frac{(x-1)(x-2)}{(x-2)(x+4)} \\
= & \frac{x-4}{x}
\end{aligned}
$$

Question 18:

Simplify:
$\frac{y^{2}-4}{y^{2}-3 y+2} \div \frac{y}{y-1}$

Solution 18
$\frac{y^{2}-4}{y^{2}-3 y+2} \div \frac{y}{y-1}$

Question 19

Simplify:
$\frac{m^{2}-m n}{n^{2}-n p} \div \frac{n^{2}-m n}{m n-m p}$

Solution 19

$$
\begin{aligned}
& \frac{m^{2}-m n}{n^{2}-n p} \div \frac{n^{2}-m n}{m n-m p} \\
& \frac{m^{2}-m n}{n^{2}-n p} \div \frac{n^{2}-m n}{m n-m p} \\
&=\frac{m(m-n)}{n(n-p)} \div \frac{n(n-m)}{m(n-p)} \\
&==\frac{m(m-n)}{n(n-p)} \times \frac{m(n-p)}{n(n-m)} \\
&=\frac{(-) m(n-m)}{n(n-p)} \times \frac{m(n-p)}{n(n-m)} \\
&=\frac{-m^{2}}{n^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(y+2)(y-2)}{(y-1)(y-2)} \div \frac{y}{y-1} \\
= & =\frac{(y+2)(y-2)}{(y-1)(y-2)} \times \frac{y-1}{y} \\
= & \frac{y+2}{y}
\end{aligned}
$$

Question 20

Simplify

$$
\frac{v^{2}-3 v-4}{v^{2}-4 v} \div \frac{v^{2}-4 v+4}{v^{2}-4}
$$

Solution 20

$$
\frac{v^{2}-3 v-4}{v^{2}-4 v} \div \frac{v^{2}-4 v+4}{v^{2}-4}
$$

$$
=\frac{(v-4)(v+1)}{v(v-4)} \div \frac{(v-2)(v+2)}{(v-2)(v-2)} \quad \text { (factorisation of quadratic terms) }
$$

$$
=\frac{(v-4)(v+1)}{v(v-4)} \times \frac{(v+2)(v-2)}{(v-2)(v-2)}
$$

$$
=\frac{(v+1)}{v} \times \frac{v+2}{v-2}
$$

$$
=\frac{(v+1)(v+2)}{v(v-2)}
$$

CHAPTER 11

THE SINE RULE

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

Alternatively

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

It is used for solving triangles which are not right-angled and in which either two angles and any side are given or two sides and the angle opposite to them are given.

Question 1:

Find the size of the side b in a triangle in which $\mathrm{A}=65 \%, \mathrm{~B}=49^{0} 18^{1}$ and $\mathrm{a}=13 \mathrm{~m}$.

Solution 1

$\frac{a}{\sin A}=\frac{b}{\sin B}$
$\frac{13}{\sin 65^{\circ}}=\frac{b}{49^{\circ} 18^{\prime}}$
$\frac{13 \times \sin 49^{\circ} 18^{\prime}}{\sin 65^{\circ}}=\frac{b \sin 65^{\circ}}{\sin 65^{\circ}}$
$b=\frac{13 \sin 49^{\circ} 18^{\prime}}{\sin 65^{\circ}}$

13	
$\operatorname{Sin} 49^{\circ} 18^{\prime}$	1.1139 $+\overline{1} .8797$
	0.9936
$\operatorname{Sin} 65^{\circ}$	$-\overline{1} .9573$
10.87	1.0363

$\therefore \mathrm{b}=10,87 \mathrm{~m}$ to 2. d.p
\Rightarrow Use the \log of sines for angles
\Rightarrow Where there is multiplication you add the Logs. And where there is divisions, subtract the \log
\Rightarrow Check, 0363 on the antilog table to get the answer

Question 2

In $\triangle \mathrm{ABC}, \mathrm{A}=62^{\circ} 24^{\prime}, \mathrm{B}=75^{\circ} 36^{\prime}$
$\mathrm{a}=13,2 \mathrm{~m}$.
Find b

Solution

Turn-up College "O" Level Mathematics Questions and answers

$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\operatorname{Sin} B} \\
& \frac{13,2 \times \sin 75^{\circ} 36^{\prime}}{\sin 62^{\circ} 24^{\prime}}=\frac{b \times \sin 62^{\circ} 24^{\prime}}{\sin 62^{\circ} 24^{\prime}} \\
& \mathrm{b} \quad=\frac{13 \times \sin 62^{\circ} 24^{\prime}}{\sin 62^{\circ} 24^{\prime}}
\end{aligned}
$$

No	Log
13,2	1,1206
$\operatorname{Sin} 75^{\circ} 36^{\prime}$	$+\overline{1}, 9861$
	1,1067
$\operatorname{Sin} 62^{\circ} 23^{\prime}$	$\overline{1}, 9475$
14,43	1,1592
$\therefore \mathbf{b}=\mathbf{1 4 , 4 3 m}$	

Question 3

In $\sqcup \mathrm{PQR}, \mathrm{Q}=107,5^{\circ}, \mathrm{P}=37^{\circ} 12^{\prime}, \mathrm{p}=27,5 \mathrm{~cm}$

First Calculate \mathbf{P}

1800- ($\left.107,5^{\circ}+37^{\circ} 12^{\prime}\right)$

$$
=35,3^{\circ}
$$

Turn-up College "O" Level Mathematics Questions and answers

$$
\frac{r}{\sin 37^{\circ} 12^{\prime}}=\frac{27,5}{\sin 35,3^{\circ}}
$$

$$
\therefore \mathrm{r}=\frac{27,5 \times \sin 37^{\circ} 12^{\prime}}{\sin 35,3^{\circ}}
$$

No	
27,5	1,4393
$\operatorname{Sin} 37^{\circ} 12^{\prime}$	$+\overline{1}, 7815$
	1,2208
$\operatorname{Sin} 35,3^{\circ}$	$-\overline{1}, 7618$
28,77	1,4590

$$
\begin{aligned}
r & =\frac{21,5 \times 1.7815}{1,7618} \\
& =28,77
\end{aligned}
$$

Question 4

In $\quad \mathrm{PQR} \mathrm{P}=76^{\circ}, \mathrm{P}=225 \mathrm{~km}$ and $\mathrm{r}=179 \mathrm{~km}$. Calculate R .

Solution 4

$\frac{\sin R}{r}=\frac{\sin P}{p}$

$$
\frac{\sin R}{179}=\frac{\sin 76^{\circ}}{225}
$$

$$
\operatorname{Sin} R=\frac{179 \times \sin 76}{225}
$$

Question 5

Calculate the values of angles A and C of $\quad \sqcup \mathrm{ABC}$ where $\mathrm{b}=17 \mathrm{~m}, \mathrm{a}=9,32 \mathrm{~m}$ and $\mathrm{B}=119^{\circ} 18^{\prime}$

Solution 5

$\frac{\sin A}{9,32}=\frac{\sin 119^{\circ} 18^{\prime}}{17}$
$\operatorname{Sin} \mathrm{A}=\frac{9,32 \times \sin 119^{\circ} 18^{\prime}}{17}$

N0.	Log
9,32	0,9694
Sin $119^{\circ} 18^{\prime}$	$\overline{1}, 9406$
	0,9100
17	1,2304
$28^{\circ} 34^{\prime}$	$\overline{1}, 6796$

$\mathrm{a}<\mathrm{b}$ so $\mathrm{A}<\mathrm{B}$ also

$$
\begin{aligned}
\therefore \mathrm{A} & =28^{\circ} 34^{\prime} \\
& =180^{0}-\left(119^{\circ} 18^{\prime}{ }^{1}+28^{\circ} 34^{\prime}\right) \\
& =32^{\circ} 8^{\prime} \\
\therefore \mathrm{C} & =32^{\circ} 8^{\prime}
\end{aligned}
$$

Question 6:

Solve the triangle completely in $\triangle \mathrm{PQR}$, given that $\mathrm{Q}=29^{\circ} 30^{\prime}, \mathrm{R}=126^{\circ} 42^{\prime}, \mathrm{r}=40,7 \mathrm{~m}$

Solution 6

Turn-up College "O" Level Mathematics Questions and answers

$$
\begin{aligned}
& \mathrm{P}=180^{\circ}-\left(126^{\circ} 42^{\prime}+29^{\circ} 30^{\prime}\right) \\
&=23^{\circ} 48^{\prime} \\
& \frac{q}{\sin Q}=\frac{r}{\sin R} \\
& \frac{q}{\sin 29^{\circ}}=\frac{40,7}{\sin 126^{\circ} 42^{\prime}} \\
& \frac{q \times \sin 126^{\circ} 42^{\prime}}{\sin 126^{\circ} 42^{\prime}}=\frac{40,7 \times \sin 29^{\circ} 30^{\prime}}{\sin 126^{\circ} 42^{\prime}} \\
& \mathrm{q}=\frac{40,7 \times \sin 29^{\circ} 30^{\prime}}{\sin 126^{\circ} 42^{\prime}}
\end{aligned}
$$

${ }^{* *} \operatorname{Sin} 126^{\circ} 42^{\prime}=\operatorname{Sin} 53^{\circ} 18^{\prime}$

N 0.	Log
40,7	1,6096
Sin $29^{\circ} 30$	$\overline{1}, 6923$
	1,3019
Sin $53^{\circ} 18^{\prime}$	$\overline{1}, 9041$
25,00	1,3978

q $\quad=\mathbf{2 5 m}$
$\frac{p}{\sin P}=\frac{r}{\sin R}$
$\frac{p}{\sin 23^{\circ} 48^{\prime}}=\frac{40,7}{\sin 126^{\circ} 42^{\prime}}$
$\frac{q \times \sin 126^{\circ} 42^{\prime}}{\sin 126^{\circ} 42^{\prime}}=\frac{40,7 \times \sin 29^{\circ} 30^{\prime}}{\sin 126^{\circ} 42^{\prime}}$

Turn-up College "O" Level Mathematics Questions and answers
$p=\frac{40,7 \times \sin 23^{\circ} 48}{\sin 126^{\circ} 42^{\prime}}$

No	Log
40,7	1,6096
$\operatorname{Sin} 23^{\circ} 48^{\prime}$	$\overline{1}, 6059$
	1,2155
$\operatorname{Sin} 53^{\circ} 18^{\prime}$	$\overline{1}, 9041$
20,48	1,3114

$\therefore \mathrm{p}=20,5 \mathrm{~m}$ to $1 \mathrm{~d} . \mathrm{p}$

Question 7:

\wedge
In triangle $\mathrm{ABC}, \mathrm{B}=41^{\circ}, \mathrm{b}=7,5 \mathrm{~m}, \mathrm{a}=9 \mathrm{~m}$. Find the value of the missing angles

Solution 7

$\frac{\sin A}{a}=\frac{\sin B}{b}$

$$
\frac{\sin A}{9}=\frac{\sin 41^{\circ}}{7,5}
$$

$\operatorname{Sin} \mathrm{A}=\frac{9 \times \sin A}{7,5}$

N0	$\mathbf{L o g}$
9	0,9542
$\operatorname{Sin} 41^{\circ}$	$\overline{1}, 8169$
7.5	$0,771.1$
0,8751	
$51^{\circ} 55^{\prime}$	1,8960

** if $\mathrm{a}>\mathrm{b}$ then $\mathrm{A}>\mathrm{B}$

$$
\begin{aligned}
\mathrm{A} & =51^{\circ} 55^{\prime} \text { or } 180^{\circ}-\left(51^{\circ} 55^{\prime}\right) \\
& =128^{\circ} 5^{\prime}
\end{aligned}
$$

When $\mathrm{A}=51^{\circ} 55^{\prime}$

$$
\begin{aligned}
\mathrm{C} & =180^{\circ}-\left(51^{\circ} 55^{\prime}+41^{\circ}\right) \\
& =87^{\circ} 5^{\prime}
\end{aligned}
$$

$$
\text { When } \begin{array}{rll}
\mathrm{A} & = & 128^{\circ} 5^{\prime} \\
\mathrm{C} & = & 180^{\circ}-\left(128^{\circ} 5^{\prime}+41^{\circ}\right) \\
& =10^{\circ} 55^{\prime}
\end{array}
$$

Question 8

Calculate the values of angles A and C of Triangle ABC , where $\mathrm{b}=16,24 \mathrm{~cm}$ $\mathrm{A}=9,11 \mathrm{~cm}$ and $\mathrm{B}=121,4^{\circ}$

Solution 8

$\frac{\sin A}{a}=\frac{\sin B}{b}$
$\operatorname{Sin} \mathrm{A}=\frac{9,11 \times \sin 121,4^{\circ}}{16,24}$
since $\operatorname{Sin} 121,4^{\circ}=\quad \operatorname{Sin} 58,6^{\circ}$

Solution 9

$a<b$
A<B
$:-\quad \mathrm{A}=28.6^{\circ}$
$\mathrm{C}=180^{\circ}-\left(28.6^{\circ}+21,4^{\circ}\right)$

$$
=30^{\circ}
$$

Question 9:

Calculate the values of x in the diagram below:
Turn-up College "O" Level Mathematics Questions and answers

DIAGRAM

$180^{\circ}-\left(73^{\circ}+65^{\circ}\right)=42^{\circ}$
$\frac{x}{\sin 73^{\circ}}=\frac{10,5}{\sin 42^{\circ}}$
$x=\frac{10,5 \times \sin 73^{\circ}}{\sin 42^{\circ}}$
$\mathrm{x}=15 \mathrm{~cm}$ using a calculator

Question 10:

Calculate the angle B in triangle ABC , where $\mathrm{C}=55^{\circ}$ $\mathrm{b}=35,7 \mathrm{~cm} \mathrm{c}=43,2 \mathrm{~cm}$

Solution 10

B

N0.	Log
35,7	1,5527
$\operatorname{Sin} 55^{\circ}$	1,9134
43,2	1,4661
$42^{\circ} 37^{\prime}$	1,6355

$B=42^{\circ} 37^{\prime}$ or $180^{\circ}-42^{\circ} 37^{\prime}=137^{\circ} 23^{\prime}$

$$
\frac{\sin B}{35,7}=\frac{\sin 55^{\circ}}{43,2}
$$

$\therefore \operatorname{Sin} \mathrm{B}=\frac{35,7 \times \sin 55^{\circ}}{43,2}$
Since b < c then $\mathrm{B}<\mathrm{C}$
4
$\therefore \quad \mathrm{B}=-42^{\circ} 37^{\prime}$

CHAPTER 12

CONSTRUCTION AND LOG

Notes

a) Always use a sharp pencil
b) Always show the construction line and arcs but lightly
c) It is often a good idea to draw a rough sketch first.
** Use Ruler and compasses only
Question 1
a) Construct angles of 60° and 120°
b) Construct a 90° angle

Solution

a)

b)

Question 2:

$\begin{array}{lllll}\text { a) } & \text { Construct } & \text { a } & 30^{0} & \text { Angle } \\ \text { b) } & \text { Construct } & \text { a } & 45^{0} & \text { Angle } \\ \text { c) } & \text { Construct } & \text { a } & 15^{0} & \text { Angle }\end{array}$

Solution

a) To construct a 30° angle, bisect a 60° angle

b) To construct a 45° angle, bisect a 90° angle

c) To construct a 15° angle, bisect a 30° angle

Turn-up College "O" Level Mathematics Questions and answers

Question 3:

a)	Construct	a	135^{0}	Angle
b)	Construct	a	105^{0}	Angle

a) To construct a 135° angle, construct a 90° angle then bisect the other 90° angle \& add the 45° to 90°

b) To construct a 105° angle, construct a 30° angle on the other side of 90° angle \& bisect the 30° angle then add the 15° to 90°

Question 4

a)	Construct	a	150^{0}	Angle
b)	Construct	a	$67,5^{\circ}$	Angle

Solution

a) To construct a 150° angle, first construct a 90° \& then a 60° angle on the other side of the 90° angle. NB To construct a 75° angle, bisect a 150° angle

b) To construct a $67,5^{\circ}$ angle, bisect a 135° angle

Question 5

a) Construct a perpendicular Bisector of line AB which is 6 cm long
b) Construct the locus of points equidistant from AB and AC

Solution

a) Perpendicular bisector of line $\mathrm{A}-\mathrm{B}$ which is 6 cm or locus of points which are equidistant from A and B .

b) The angle bisector or the locus of points which are equidistant from AB and AC

Question 6

Construct a Triangle ABC , where $\mathrm{AB}=10 \mathrm{~cm}, \mathrm{BC}=9 \mathrm{~cm}$ and $\mathrm{AC}=7 \mathrm{~cm}, \mathrm{AB}$ being the Base of the triangle

Solution

To construct a triangle,

1) draw straight line
2) open your compass to the required length and draw the arcs on the straight line
3) open your compass to the next length and draw an arc and then join the arcs together

Question 7:

Construct a circum-circle/ circumscribed circle outside a triangle PQR where $\mathrm{PQ}=7 \mathrm{~cm}, \mathrm{QR}=$ 5 cm and $\mathrm{PR}=6 \mathrm{~cm}$.

Turn-up College "O" Level Mathematics Questions and answers

Solution

To construct a circum-circle or circumscribed circle, you bisect any two sides and where the two bisectors meet that is the centre of the circle.

Question 8

Construct an inscribed circle or encircle inside an equilateral triangle measuring 10 cm .

Solution

To construct an inscribed circle/in-circle, you have to bisect the angles and where the bisectors meet is the centre of the circle

Construction and Loci

Question 9:

Answer the whole of this question on a sheet of plain paper.
Use ruler and compasses only and show all construction lines and arcs

Turn-up College "O" Level Mathematics Questions and answers

In the diagram, A, B and X are three towns. The distance between A and B is 140 km and $\mathrm{ABX}=$ 60°. From A, the bearing of B is 045° and that of X is 330°.
a) Using a scale of 1 cm to represent 20 km , construct an accurate scale drawing of $\triangle A B X$
b) Measure the length AX and state the distant between A and X in Kilometre
c) Construct the locust of powers equipment from X and B .

Solution

Question 10

Use ruler and compass only for all construction and show clearly all the construction lines and arcs.
a) Construct on a single diagram
i) Parallelogram ABCD in which $\mathrm{AB}=11 \mathrm{~cm}, \mathrm{BC}=8,5 \mathrm{~cm}$ and $\mathrm{ABC}=150^{\circ}$
ii) Measure and write down the length of the perpendicular from B to $D C$.
iv) Locus of points which are cm from AB .

Solution

Question 11:

Construction $P Q R$ where $P Q=9 \mathrm{~cm}, \mathrm{QR}=7 \mathrm{~cm}$ and $\mathrm{RP}=6 \mathrm{~cm}$. Draw the circumcircle of this triangle and measure its radius.

Solution

Turn-up College "O" Level Mathematics Questions and answers

Question 12:

Answer this part of the question on a sheet of plain paper. Use ruler and compasses only.
i) Construct A triangle PQR in which $\mathrm{PQ}=7,5 \mathrm{~cm}, \mathrm{QR}=6 \mathrm{~cm}$ and $\mathrm{PQR}=900$
ii) Measure and write down the length of $P R$
iii) Draw the Locus of points which are 5 cm from the point R
i) Draw the Locus of points which are 2 cm from the line QR and on the same side of QR as P.
ii) Mark the two points, x inside the triangle and y outside the triangle which are 5 cm from R and 2 cm from QR .

Solution

Question 13:

i) Construct A triangle $X Y Z$ such that $X Y=7 \mathrm{~cm}, Y Z=9,5 \mathrm{~cm}$ and $X Z=6 \mathrm{~cm}$.
ii) Measure and state the size of the largest angle
iii) Construct the perpendicular Bisector of YZ
iv) Construct the lows of points 3 cm from XY
v) Mark two points and label them P and Q which are 3 cm from XY and equipment from Y and Z .

Solution

Question 14

Construct the triangle PQR in which $\mathrm{PQ}=9 \mathrm{~cm}, \mathrm{PR}=7,5 \mathrm{~cm}, \mathrm{RPQ}=45^{\circ}$
i) Measure and write down the length of QR
ii) Construct the locus of points which are 5 cm from Q .

Solution

Question 15

i) Construct the triangle ABC such that $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}$ and $\mathrm{ABC}=90^{\circ}$
ii) Measure and write down the angle BCA and the Length of AC
iii) Construct the circum-circle of the triangle and measure its radius.

Turn-up College "O" Level Mathematics Questions and answers

Solution

Question 16

Use Ruler and compasses only and clearly show all construction lines and arcs on a single diagram.
a) Construct a quadrilateral ABCD in which $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm} \mathrm{CD}=5 \mathrm{~cm}, \mathrm{ABC}=135^{\circ}$ and $\mathrm{BCD}=120^{\circ}$
b) Measure and write down:
i) The length of AD
ii) BAD
c) Construct the locus of points
i) Equidistant from AB and BC
ii) $\quad 3 \mathrm{~cm}$ from BC and on the same side of BC as A
iii) 4 cm from B

Solution

Turn-up College "O" Level Mathematics Questions and answers

Question 17

i) Construct A parallelogram PQRS with $\mathrm{PQ}=8 \mathrm{~cm}, \mathrm{PS}=5,5 \mathrm{~cm}$ and $\mathrm{SPQ}=30^{\circ}$
ii) Construct from PQ and PS.
iii) Construct locus of points which are equidistant from P and Q
iv) Label X the point which is equidistant from PQ and PS and also equidistant from P and Q

Solution

Question 18:

Use ruler and compass only for all constructions. Use A plain paper to answer this question.
Construct the triangle LMN in which $\mathrm{LM}=12 \mathrm{~cm}, \mathrm{LMN}=600$ and $\mathrm{MN}=10 \mathrm{~cm}$
i) Measure and write down the length of LN
ii) On the same diagram
a) Draw the locus of points equidistant from LM and LN
b) Draw the locus of points equidistant from L and N
iii) Mark on your diagram, the point P which I equidistant from L and n and from LM and LN.

Solution

Question 19

Answer the whole of this question on A plain paper
a) Construct A triangle PQR in which $\mathrm{PQ}=7,2 \mathrm{~cm}$ PR $=10 \mathrm{~cm}$ and $\mathrm{RPQ}=135^{\circ}$
b) Measure and write down:
i) The length of RQ
ii) The size of angle PQR
c) Construct the locus of points
i) $2,5 \mathrm{~cm}$ from QR
ii) Equipment from P and R
d) Label X and Y the locus of points which are $2,5 \mathrm{~cm}$ from QR and equidistant from P and R.

Solution

Question 20

Construct on a single diagram
a) Triangle $X Y Z$ with base
$\mathrm{XY}=12 \mathrm{~cm}, \mathrm{XZ}=10 \mathrm{~cm}$ and $\mathrm{YZ}=8,5 \mathrm{~cm}$
b) The locus of points equidistant from $X Y$ and $X Z$.
c) The circumcircle of the Triangle XYZ
d) Label The point P which is on the circumcircle and also equidistant from XY and YZ .
e) Measure and write down the length of PY

Solution

CHAPTER 13

COSINE RULE

The Cosine Formula for finding the sides :-

1. $a^{2}=b^{2}+c^{2}-2 b c \quad \operatorname{Cos} \mathrm{~A}$
2. $b^{2}=a^{2}+c^{2}-2 a c \quad \operatorname{Cos} \mathrm{~B}$
3. $c^{2}=a^{2}+b^{2}-2 a b \quad \operatorname{Cos} \mathrm{C}$

Also For the angles:-:-

1. $\operatorname{Cos} \mathbf{A}=\frac{a^{2}+b^{2}+c^{2}}{2 b c}$
2. $\boldsymbol{\operatorname { C o s }} \mathbf{B}=\frac{a^{2}+c^{2}-b^{2}}{2 a c}$
3. $\mathbf{C o s} \mathbf{C}=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$
$\operatorname{Cos} \theta=-\operatorname{Cos}\left(180^{\circ}-\theta\right)$
$\operatorname{Sin} Q=\operatorname{Sin}\left(180^{\circ}-\boldsymbol{\theta}\right)$
Q1. Find the values of the following
a) $\operatorname{Cos} 87^{\circ}$
b) $\operatorname{Cos} 155^{\circ}$

Solution

$$
\begin{aligned}
\text { a) } \begin{aligned}
\operatorname{Cos} 87^{\circ} & =\underline{0,0523}:- \\
\text { b) } \operatorname{Cos} 155^{\circ} & =-\operatorname{Cos}\left(180^{\circ}-155^{\circ}\right) \\
& =-\operatorname{Cos} 25^{\circ} \\
& =\mathbf{- 0 , 9 0 6 3}
\end{aligned}
\end{aligned}
$$

Q2, Five $\mathrm{O}^{\circ} \leq \theta \leq 180^{\circ}$, Find θ in degrees \& Minutes if
a) $\quad \operatorname{Sin} \theta=0,8725$
b) $\quad \operatorname{Cos} \theta=-0,3227$

Solution 2

$$
\begin{array}{ll}
\text { a) } & \text { Since }=0,8725 \\
0,8725=60^{\circ} 45^{1} \text { or } \\
=\quad 180^{\circ}-\left(60^{\circ} 45^{1}\right) \\
=\quad 119^{\circ} 15^{1}
\end{array}
$$

$:-\mathbf{0 , 8 7 2 5} \quad=\quad 60^{\circ} 45^{\prime}$ or $119^{\circ} 15^{\prime}$
b) $\quad \operatorname{Cos} \theta=-0,3227$

This is an obtuse angle, so you check the 0,3227 the cosine table ignoring the-ve sign.

$$
\begin{aligned}
& 0,3227=71^{\circ} 10^{\prime} \\
& 180^{\circ}-\left(71^{\circ} 10^{\prime}\right)=108^{\circ} 50^{\prime} \\
& \theta=\underline{108^{0} 50^{1}}
\end{aligned}
$$

Question 3:

Give your answers correct to the nearest degree. Find α If :-
a) $\operatorname{Cos} \alpha=0,9397$
b) $\operatorname{Cos} \alpha=0,9397$

Solution 3

$\operatorname{Cos} \alpha=\quad 0,9397$
From Table 0,9397=20 0^{0}
$\alpha=20^{\circ}$

Question 4:

Solve the following Equation for values of θ between 0 and 180°

$$
4 \operatorname{Cos} \theta+3=0
$$

Solution 4

$4 \operatorname{Cos} \theta+3=0$

$$
\begin{aligned}
& \frac{4 \operatorname{Cos} \theta}{4}=\frac{-3}{4} \\
& \operatorname{Cos} \theta \quad=\frac{-3}{4}
\end{aligned}
$$

$$
\theta \text { is an obtuse angle from tables } 0,7500=41^{\circ} 25^{\prime}
$$

$$
180^{\circ}-\left(41^{\circ} 25^{\prime}\right)=138^{\prime} 35^{\prime}
$$

$$
:-\theta=138^{\circ} 35^{1}
$$

b) $\quad \operatorname{Cos} \alpha=-0,9397$
α is an obtuse angle
$0,9397=\quad 20^{\circ}$
$180^{\circ}-20^{\circ}=160^{\circ}$
:- $\alpha=160^{\circ}$

Question 5: if $\operatorname{Cos} 163^{\circ}=\mathrm{P}$
State the value of $\operatorname{Cos} 17^{\circ}$
Solution 5
From the fact that $\operatorname{Cos} \theta=-\operatorname{Cos}\left(180^{\circ}-\theta\right)$
If $\operatorname{Cos} 163^{\circ}=P$ This means that $\underline{\operatorname{Cos} 17^{\circ}=-p}$

Question 6

Find the marked side correct to 3 S.F

Solution 6

Turn-up College "O" Level Mathematics Questions and answers

$$
\begin{aligned}
x^{2} & =\mathrm{PR}^{2}+\mathrm{PQ}^{2}-2 \mathrm{PR} \times \mathrm{PQ} \operatorname{Cos} 380 \\
x^{2} & =5^{2}+4^{2}-2(4 \times 5) \operatorname{Cos} 380 \\
x^{2} & =25+16-20 \times 0,7880 \\
x^{2} & =41-15,76 \\
\sqrt{x^{2}} & =\sqrt{25.24} \\
\times & =\sqrt{25.24} \\
\times & =5,024 \\
\therefore x & =\underline{\mathbf{5 , 0 2} \mathbf{c m}}
\end{aligned}
$$

Q7: Calculate the length of the Third Side of A Triangle giving your To 1.d.p.

Solution 7

$a^{2}=b^{2}+c^{2}-2 b c \operatorname{Cos} \mathrm{~A}$
$a^{2}=4^{2}+6^{2}-2(4 \times 6) \operatorname{Cos} 57^{\circ}$
$a^{2}=52-48 \operatorname{Cos} 57^{\circ}$
$a^{2}=52-48 \times 0,5446$
$a^{2}=52-26,1408$
$a^{2}=25,8592$
$a^{2}=\sqrt{25,8592}=\sqrt{25,86}$
From tables $\sqrt{25,86} \quad=5,085$

$$
\therefore \quad \mathrm{a}=5,1 \mathrm{~m}
$$

Question 8:

Turn-up College "O" Level Mathematics Questions and answers

Calculate the length of the side opposite the given angle in Triangle ABC. Give your answer correct to 3 S.F.
$\mathrm{C}=\quad 45,7^{\circ}, \mathrm{a}=11,2 \mathrm{~km}, \quad \mathrm{~b}=17,1 \mathrm{~km}$
Solution 8

D

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \operatorname{Cos} C \\
& c^{2}=(11,2)^{2}+(17,1)^{2}-2(11,2 \times 17,1) \operatorname{Cos} 45,7^{\circ} \\
& c^{2}=125,44+292,41-383,04 \operatorname{Cos} 45,7^{0} \\
& c^{2}=417,85-383,04 \times 0,6984 \\
& c^{2}=417,85-267,52 \\
& c^{2}=150,33 \\
& c=\sqrt{150.33} \\
& c=12,26 \ldots \\
& :-C=12,3 \mathrm{~km} \text { to 3.S.F }
\end{aligned}
$$

Question 9

In the Diagram below, ABC is A Triangle in which $\mathrm{BC}=3 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm}, \mathrm{AB}=\mathrm{kcm}$ and $\mathrm{ACB}=139^{\circ}$. The Side BC is produced to M . Given that $\operatorname{Cos} 139^{\circ}=-0,75$,
a) State the value of Cos MCA
b) Calculate the value of k

Solution 9

a) $\operatorname{Cos} \mathrm{MCA}=0,75$
b) $\mathrm{k}^{2}=7^{2}+3^{2}-2(7 \times 3) \operatorname{Cos} \mathrm{C}$
$k^{2}=49+9-42 \operatorname{Cos} 139^{\circ}$
$\mathrm{k}^{2}=58-42 \times(-0,75)$
$\mathrm{k}^{2}=58+42 \times 0,75$
$\mathrm{k}^{2}=58+31,2$
$\mathrm{k}^{2}=89,5$
$\mathrm{k}=\sqrt{89.5}$
:- $\quad k=9,46 \mathrm{~cm}$ to 3 S.F

$$
\begin{aligned}
& \mathrm{PR}^{2}=\mathrm{QR}^{2}+\mathrm{PQ}^{2} \\
& 15^{2}=\mathrm{QR}^{2}+9^{2} \\
& \mathrm{QR}^{2}=15^{2}-9^{2} \\
& \mathrm{QR}^{2}=225-81 \\
& \mathrm{QR}^{2}=144
\end{aligned}
$$

Solution 10

$$
\begin{aligned}
& \mathrm{QR}=\sqrt{144} \\
& \mathrm{QR}=12
\end{aligned}
$$

bi) \quad Tan $\mathrm{PRQ}=\quad \frac{9}{12}$
ii) \quad Sin PRS $=\frac{9}{15}$
iii) $\operatorname{Cos} \mathrm{PRS}=\frac{-12}{15}$

Question 11

Calculate the unknown side. Give the Final Answer Correct to 3.S.F

Solution 11

$\mathrm{PR}^{2}=\quad \mathrm{PQ}^{2}+\mathrm{QR}^{2}-2(\mathrm{PQ} \times \mathrm{QR}) \cos \mathrm{Q}$
$\mathrm{PR}^{2}=3,8^{2}+11^{2}-2(3,8 \times 11) \operatorname{Cos} 141,8^{\circ}$
$=14,44+121-83,6\left(-\operatorname{Cos} 38,2^{\circ}\right)$
$=\quad 135,44-83,6 \times(-07859)$
$=\quad 135,44+83,6 \times 0,7859$
$=\quad 135,44+65,70124$
$=\quad 201,14124$
$\mathrm{PR}=\sqrt{201.1}$
$\mathrm{PR}=14,2 \mathrm{~m}$

Question 12

\wedge
In the Triangle $\mathrm{ABC}, \mathrm{AB}=8 \mathrm{~km}, \mathrm{Ac}=6 \mathrm{~km} \mathrm{BAC}=94^{0} 12^{1}$. Calculate.
a) The Length of the third side
b) The Area of Triangle ABC to 3 S .

Solution

$$
\begin{array}{ll}
\text { a) } \quad a^{2}=b^{2}+c^{2}-\quad 2 b c \operatorname{Cos} A \\
& a^{2}=6^{2}+8^{2}-2(6 \times 8) \operatorname{Cos} 94^{0} 12^{1} \\
& a^{2}=36+64-96 \times \operatorname{Cos} 94^{0} 12^{1} \\
& a^{2}=100-96 \times\left(-\operatorname{Cos} 85^{0} 48^{1}\right) \\
& a^{2}=100+96 \times 0,0732 \\
& a^{2}=100+7,0272 \\
& a^{2}=107,0272 \\
\text { a } \quad & =\sqrt{107,0} \\
\text { b) } \quad \text { Area }=\frac{1}{2} a b \operatorname{Sin} C \\
=\quad & \frac{1}{2} \times 8 \times 6 \times \operatorname{Sin} 94^{\circ} 12^{\prime} \\
=\quad & \frac{1}{2} \times 8 \times 6 \times \operatorname{Sin} 85^{0} 48^{1} \\
= & \frac{1}{2} \times 8 \times 6 \times 0,9973 \\
& 24 \times 0,9973
\end{array}
$$

Turn-up College "O" Level Mathematics Questions and answers

```
= 23,9352
= 23,9km2
```


Question 13

Find x in the Triangle below

Solution 13

$$
\begin{aligned}
& x^{2}=6^{2}+4^{2}-2 \times 6 \times 4 \times \operatorname{Cos} 105^{\circ} \\
& x^{2}=36+24-48 \times(-\operatorname{Cos} 75) \\
& x^{2}=60+48 \times 0,2588 \\
& x^{2}=60+12,4244 \\
& x^{2}=72,4224 \\
& x^{2}=72,42 \text { to } 4 \text { SF } \\
& x=\quad \sqrt{72.24} \\
& x=8,511 \\
& \therefore \underline{x=8,51 \mathrm{~cm}} \text { to 3.S.F }
\end{aligned}
$$

Question 14

In Triangle ABC .
$\mathrm{C}=\quad \mathbf{9 , 2 1 m}, \mathrm{a}=\mathbf{6 , 8 3 m}$ and
$B=1670301$, Calculate AC

Solution 14

$$
\begin{array}{ll}
1 & \mathrm{~b}^{2}=6,83^{2}+9,21^{2}-2(9,21 \times 6,83) \operatorname{Cos} 167^{\circ} 30^{\prime} \\
& =46,65+84,82-125,8086 \times\left(\operatorname{Cos} 167^{0} 30^{1}\right. \\
& =131,47-125,8086 \times\left(-\operatorname{Cos} 12^{0} 30^{1}\right) \\
& =131,47+125,8086 \times 0,9763 \\
& =131,47+122,83 \\
& =254,3 \\
b & =\sqrt{254.3} \\
b & =15,95 \\
:- & b=\mathbf{1 6 , 0 m}
\end{array}
$$

Question15:

Peter and Tom leave from the same point P. Peter
Travels on a bearing of 0350 for 13 km to point Q . Tom Travels on A bearing of 1500 to point R, 18kmfrom P. Find QR.

Solution 15

$$
\begin{aligned}
& \mathrm{P}^{2}=18^{2}+13^{2}-2 \times 18 \times 13 \operatorname{Cos} 175^{\circ} \\
& =\quad 324+169-468 \times(-\operatorname{Cos} 65) \\
& =\quad 493+468 \times 0,4226 \\
& =\quad 493+197,78 \\
& =690,78 \\
& =\sqrt{690.8} \\
& =\quad 26,28
\end{aligned}
$$

Question 16:
Calculate the largest Angle in triangle ABC with sides of length $6 \mathrm{~m}, 7 \mathrm{~m}$ and 10 m leaving your answer in degrees

Solution 16

$$
\begin{aligned}
& \operatorname{Cos} \mathrm{C}=\frac{a^{2}+b^{2}-c^{2}}{2 a b} \\
&=\frac{6^{2}+7^{2}-10^{2}}{2 \times 6 \times 7} \\
&=\frac{85-100}{84} \\
&=\frac{-15}{84} \\
& \text { Cos c }= \\
& \text { Cos C }=-0,1786 \\
& \text { Since Cos c is negative, } \mathrm{c} \text { is obtuse } \\
& 0,1786=79,7^{0} \\
& \mathrm{C} \quad=1800-79,7^{0}=100,3^{0} \\
& \mathrm{C} \quad=100,3^{0}
\end{aligned}
$$

Question 17 In the diagram, VWX is a triangle in which $\mathrm{VW}=4 \mathrm{~cm} \mathrm{WX}=$ 5 cm and $\mathrm{VX}=7 \mathrm{~cm}$ calculate VWX.

Solution

$\operatorname{Cos} \mathrm{W}=\frac{X^{2}+V^{2}-W^{2}}{2 \times V \times X}$
$=\frac{4^{2}+5^{2}-7^{2}}{2 \times 4 \times 5}$
$=\frac{41-49}{40}$

Question 18

Calculate the angles of the triangle ABC.mos sides are given in meters

$$
\begin{aligned}
& =\quad \frac{-8}{40} \\
& =\quad-0,2 \\
& 0 ; 2=780,50 \\
& \mathrm{~W}=180^{\circ}-78,5^{0} \\
& =\quad \underline{101,5^{\circ}}
\end{aligned}
$$

Solution 18

$$
\begin{aligned}
\operatorname{Cos} \mathrm{A} & = \\
& \frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
& = \\
& \frac{3^{2}+7^{2}-9^{2}}{2 \times 3 \times 7} \\
& = \\
& \frac{58-81}{42} \\
& = \\
\mathrm{A} & \\
& =180^{0}-56,8^{0} \\
& =123,2^{0}
\end{aligned}
$$

$\operatorname{Cos} \mathrm{B}=\frac{a^{2}+c^{2}-b^{2}}{2 a c}$
$=\frac{92+72-32}{2 \times 9 \times 7}$

$$
\begin{aligned}
& =\frac{81+49-9}{12 b} \\
& =\frac{121}{126} \\
& =\frac{0,9603}{\mathrm{~B}=\quad \frac{16,2^{0}}{2}} \\
& \mathrm{Cos} \mathrm{C}=\frac{a^{2}+b^{2}-c^{2}}{2 a b} \\
& =\frac{9^{2}+3^{2}-7^{2}}{2 \times 9 \times 3} \\
& = \\
& \mathrm{C}=\frac{81+9-49}{54} \\
& =\frac{40,6^{0}}{54}
\end{aligned}
$$

Question 20

Three Triangulation villages A, B and C are such that $\mathrm{AB}=10 \mathrm{~km}, \mathrm{BC}=14 \mathrm{~km}$ and $\mathrm{AC}=12 \mathrm{~km}$ Respectively. Find ABC.
Solution 20

$$
\begin{aligned}
& \operatorname{Cos} \mathrm{B}=\quad \frac{a^{2}+c^{2}-b^{2}}{2 a c} \\
& =\quad \frac{1424+102-122}{2 \times 14 \times 10} \\
& =\quad \frac{152}{280} \\
& =\quad 0,5429 \\
& \therefore \quad \underline{\mathbf{B}=\mathbf{5 7} \mathbf{7}} \mathbf{7}^{\prime}
\end{aligned}
$$

Question 21

The points P, Q and R are situated so that $\mathrm{PQ}=70 \mathrm{~km}, \mathrm{PR}=110 \mathrm{~km}$. The bearing of Q from $\mathrm{P}=$ 0650 and the bearing of R from P is 2800 . Calculate the distance QR .

Solution 21

$$
\begin{aligned}
\mathrm{QR}^{2} & =110^{2}+70^{2}-2 \mathrm{x} 110 \times 70(031450 \\
& =12100+4900-15400 \times\left(-\operatorname{Cos} 35^{\circ}\right) \\
& =17000+15400 \times 0,8192 \\
& =17000+12615,68 \\
& =29615,68 \\
& =29616 \\
\mathrm{QR} & =\sqrt{29616} \\
\mathrm{QR} & =172,09 \\
& =172 \mathrm{~km} \text { to } 3 \mathrm{~S} . \mathrm{F}
\end{aligned}
$$

Question 22

A Boy cycles 45 km on a bearing 35° and then 180 km due east. How far is he from his starting point?

Solution 22

$$
900+350=1250 \text { To correct }
$$

$$
\begin{aligned}
X^{2} & =45^{2}+150^{0}-2 \times 45 \times 180 \operatorname{Cos} 125^{0} \\
& =2025+32400-16200 \times-\left(\operatorname{Cos} 55^{\circ}\right) \\
& =34425+16200 \times-, 5736 \\
& =34425+9292,32 \\
& =43717,32 \\
& =43717 \\
\times & =\sqrt{43717} \\
\times & =209,08 \\
\therefore \quad & \times=209 \mathrm{~km}
\end{aligned}
$$

Question 23:

A triangular zinc sheets has two sides 20 m and 35 m respectively and the angle between these sides is 92,70 . How long is the third side?

Solution 23

$$
\begin{aligned}
& A^{2}=35^{2}+20^{2}-2 \times 35 \times 20(0392,70) \\
& A^{2}=1225+400-1400 \times(-\operatorname{Cos} 87.30) \\
& =1625+1400 \times 0,0471 \\
& =1625+65,95 \\
& =1690,94 \\
& \mathrm{a}=\sqrt{1690,94} \\
& \mathrm{a}=41,12 \\
& :-\mathrm{a}=41,1 \mathrm{~km} \text { to 3.S.F }
\end{aligned}
$$

Question 24

Find y and \& in the Diagram below. All lengths are given in metres

$$
\operatorname{Cos} \alpha=\frac{14^{2}+10^{2}-13,5^{2}}{2 \times 14 \times 10}
$$

$$
\begin{array}{r}
=\frac{196 \div 100-182,25}{280} \\
=\quad \frac{296-182,25}{280}
\end{array}
$$

Solution

$$
\begin{array}{llll}
\mathrm{y} 2 & =122+102-2 \times 12 \times 10(\operatorname{Cos} 7500 & = & \frac{113,75}{280} \\
& =144+100-240 \times 0,2588 \\
& =244-62,112 & & =\quad 0,4063 \\
& =181,888 \\
y & =\sqrt{181,89} & & \\
\therefore- & y=13,5 \mathrm{~cm} \text { to } 3 . \text { S.F } & a=66^{\circ} 2^{1}
\end{array}
$$

Question 25

$\underline{\mathrm{ABCD}}$ IS A Quadrilateral where $\mathrm{BC}=9 \mathrm{~cm}, \mathrm{CD}=7 \mathrm{~cm} \mathrm{BD}=5 \mathrm{~cm}, \mathrm{ABD}=50^{\circ}$ and $\mathrm{BDA}=650$. Calculate
a) AD
b) BDC

b) $\quad \operatorname{Cos} \mathrm{D}=\quad \frac{7^{2}}{2}=\frac{5^{2}}{7}=\frac{9^{2}}{5}$

$$
=\quad \frac{74-81}{70}
$$

Solution

$$
=\quad \frac{-7}{70}
$$

$180^{\circ}-\left(65^{\circ}+50^{\circ}\right)=65^{\circ}$

$$
=\quad-0,1
$$

So BAD $=65^{\circ}$

$$
D=180^{\circ}-\left(84^{\circ} 16^{1}\right)
$$

a) $\frac{A D}{\operatorname{Sin} 50^{\circ}}=\frac{5}{\operatorname{Sin} 65^{\circ}}$

Turn-up College "O" Level Mathematics Questions and answers

$$
\begin{aligned}
& \frac{A D \times \operatorname{Sin} 65^{\circ}}{\operatorname{Sin} 65^{\circ}}=\frac{5 \times \operatorname{Sin} 5^{\circ}}{\operatorname{Sin} 65^{\circ}} \\
A D & =\quad \therefore \quad D \quad=95^{\circ} 44^{\prime} \\
A D & \frac{5 \times \operatorname{Sin} 50}{\operatorname{Sin} 65^{\circ}} \\
&
\end{aligned}
$$

[^0]: Copyright © by Turn-Up College
 First printed 2006
 Re-printed 2008; 2010, 2011
 All rights reserved; printed in Zimbabwe. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying recording or otherwise without prior written permission from the publisher or a license permitting restricted copying in the Zimbabwean Copyright Act. This study material has been provided in good faith. It is illegal to reproduce it. Should it be reproduced, we will take legal action against that person and anyone else connected thereto. For further information contact: Turn Up College 28 International Trade Centre P.O. BOX 2759 Bulawayo.

