Centre Number	Candidate Number	Name	
UNIVERS	SITY OF CAMBRIDG General Certificate	E INTERNATIONAL	. EXAMINATIONS ry Level
MATHEMAT	TICS (SYLLABUS I	D)	4024/01
Paper 1			May/ June 2005
			2 hours
Candidates ans Additional Mate	wer on the Question Pap rials: Geometrical instru	er. uments	2 110015
READ THESE INSTRU	CTIONS FIRST		
Write your Centre numb Write in dark blue or bla You may use a pencil fo Do not use staples, pap	er, candidate number an ck pen in the spaces pro or any diagrams or graphs er clips, highlighters, glue	d name on all the work y vided on the Question P s. e or correction fluid.	/ou hand in. aper.
Answer all questions. The number of marks is	given in brackets [] at the	he end of each question	or part question.
If working is needed for Omission of essential w The total of the marks fo	any question it must be s orking will result in loss o or this paper is 80.	shown in the space below f marks.	w that question.
NEITHER ELECTRON PAPER.	C CALCULATORS NO	R MATHEMATICAL TA	ABLES MAY BE USED IN THIS
			For Examiner's Use

This document consists of **16** printed pages.

UNIVERSITY of CAMBRIDGE

[Turn over

	3
4 A	is due North of O .
(8) A ship sailed from <i>O</i> to <i>B</i> , where $A\hat{O}B = 12^{\circ}$. Write down the bearing of <i>B</i> from <i>O</i> .
(I) At <i>B</i> , the ship turned and sailed to <i>C</i> , where $O\hat{B}C = 50^{\circ}$. Calculate the bearing of <i>C</i> from <i>B</i> .
	Answer (a)[1]
	<i>(b)</i>
5 (a) When Peter went to Hong Kong, he changed £50 into \$616. Calculate what one British pound (£) was worth in Hong Kong dollars (\$).
(1) It takes 8 hours for 5 people to paint a room. How long would it take 4 people?
	Answer (a) $\pounds 1 = $ [1]
	Answer (a) $\pounds 1 = \$$ [1] (b)h [1]
6 (a	Answer (a) £1 = \$[1] (b)h [1]) The population of a city is given as 280 000, correct to the nearest ten thousand. State the greatest possible error in the given value.
6 (a	Answer (a) £1 = \$[1] (b)h [1]) The population of a city is given as 280 000, correct to the nearest ten thousand. State the greatest possible error in the given value.) The dimensions of a rectangular card are 7 cm by 4 cm, correct to the nearest centimetre. Calculate the smallest possible perimeter of the card.
6 (£	Answer (a) £1 = \$[1] (b)h [1]) The population of a city is given as 280 000, correct to the nearest ten thousand. State the greatest possible error in the given value.) The dimensions of a rectangular card are 7 cm by 4 cm, correct to the nearest centimetre. Calculate the smallest possible perimeter of the card.
	Answer (a) £1 = \$[1] (b)

7

The number of hours worked each day by Adam and Brenda is shown in the table.

	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6
Adam	7	5	8	9	8	0
Brenda	0	8	9	9	7	5

The number of hours for which they are paid is calculated in the following way. On each of days 1 to 5, every hour worked after the first 7 hours is counted as $1\frac{1}{2}$ hours. On day 6, every hour worked is counted as 2 hours.

- (a) Calculate the total number of hours for which Adam was paid.
- (b) The rate of pay is \$14.50 per hour. How much did Brenda earn on day 6?

Answer (a)h [1]

(b) \$.....[1]

 $\mathbf{f}(x) = \frac{2x-1}{3}.$ 8

Find an expression for $f^{-1}(x)$.

Answer $f^{-1}(x) = \dots [2]$

4024/01/M/J/05

	3x + y = 95,
	x + y = 29.
	Answer r -
	$Answer x - \dots$
	<i>y</i> =[2]
Red Line buses run every 20 minutes Purple Line buses run every 35 minut One bus from each Line leaves the ci After how many minutes will buses fro	tes. ty centre at 09 00. om all three Lines next leave the city centre at the same time?
	Answer[2]

4024/01/M/J/05

www.xtremepapers.net

[Turn over

For Examiner's Use

11

One hundred children were asked how far they could swim. The results are summarised in the table.

Distance (<i>d</i> metres)	$0 < d \le 100$	$100 < d \le 200$	$200 < d \le 400$
Number of children	30	50	20

(a) The histogram in the answer space represents part of this information. Complete the histogram.

(b) A pie chart is drawn to represent the three groups of children.Calculate the angle of the sector that represents the group of 20 children.

Answer (b)[1]

4024/01/M/J/05

r's		7	E
12	(a)	A TV programme list shows that a film begins at 21 55.	
		At what time will it end?	
		Express your answer using the 24 hour clock.	
	(b)	The times taken by an athlete to run three races were 3 minutes 59.1 seconds, 4 minutes 3.8 seconds and 4 minutes 1.6 seconds. Calculate the mean time.	
		Answer (a)[1]	
		(<i>b</i>) minutes seconds [2]	
13	(a)	<i>P</i> is the point $(-3, 3)$ and <i>Q</i> is the point $(13, -2)$. Find the coordinates of the midpoint of <i>PQ</i> .	
	(b)	Answer (a) (
		(i) Draw the line $x - 3y = k$ on the diagram.	
		(ii) Calculate the value of k.	
		Answer (b)(i) y	
		-2 0 2 4 6 8 10 12 14 x	
		-2	
		(ii) $k =$	

)		
14	A, E TA a AÎE	and S are points on a circle, centre O. and TB are tangents. $B = 52^{\circ}$.			52°/ ^T
	Calo	culate		A	7
	(a)	AÔB,		$\langle \rangle \rangle$	/
	(b)	OÊA,			
	(c)	AŜB.		S	
			Answer (a) AÔE	B =	[1]
			$(b) O \hat{B}_{A}$	A =	[1]
			$(c) A \hat{S} B$	=	[1]
15	It is	given that $N = 87 \times 132$.			
	(a)	Complete the statements in the answer s	pace.		
			Answer (a) 88 >	$< 132 = N + \dots$	[1]
			07.	(121 N	513
			8/>	$(131 = N - \dots)$	[1]
	(b)	Hence evaluate $88 \times 132 - 87 \times 131$.	87>	(151 = N –	[1]
	(b)	Hence evaluate $88 \times 132 - 87 \times 131$.	87>	(131 = N –	[1]
	(b)	Hence evaluate $88 \times 132 - 87 \times 131$.	81> Answer (b)	(131 = N –	[1]
16	(b) (a)	Hence evaluate $88 \times 132 - 87 \times 131$. The number 222.222 is written in the ar Circle the digit which represents the val	Solution $Answer (b) \dots$ swer space. ue 2×10^{0} .	x 131 = N	[1]
16	(b) (a) (b)	Hence evaluate $88 \times 132 - 87 \times 131$. The number 222.222 is written in the ar Circle the digit which represents the val Write 5×10^{-2} as a fraction in its simple	Answer (b) swer space. ue $2 \times 10^{\circ}$. est form.	x 131 = N	[1]
16	(b) (a) (b) (c)	Hence evaluate $88 \times 132 - 87 \times 131$. The number 222.222 is written in the arr Circle the digit which represents the val Write 5×10^{-2} as a fraction in its simple Evaluate $8^{\frac{2}{3}}$.	Answer (b) swer space. ue $2 \times 10^{\circ}$. est form.	x 131 = N	[1]
16	(b) (a) (b) (c)	Hence evaluate $88 \times 132 - 87 \times 131$. The number 222.222 is written in the ar Circle the digit which represents the val Write 5×10^{-2} as a fraction in its simple Evaluate $8^{\frac{2}{3}}$.	Answer (b) swer space. ue $2 \times 10^{\circ}$. est form.		[1]
16	(b) (a) (b) (c)	Hence evaluate $88 \times 132 - 87 \times 131$. The number 222.222 is written in the ar Circle the digit which represents the val Write 5×10^{-2} as a fraction in its simple Evaluate $8^{\frac{2}{3}}$.	Answer (b) swer space. ue $2 \times 10^{\circ}$. est form.		[1]
16	(b) (a) (c)	Hence evaluate $88 \times 132 - 87 \times 131$. The number 222.222 is written in the ar Circle the digit which represents the val Write 5×10^{-2} as a fraction in its simple Evaluate $8^{\frac{2}{3}}$.	Answer (b) swer space. ue $2 \times 10^{\circ}$. est form. Answer (a)	222.222	[1]
16	(b) (a) (c)	Hence evaluate $88 \times 132 - 87 \times 131$. The number 222.222 is written in the ar Circle the digit which represents the val Write 5×10^{-2} as a fraction in its simple Evaluate $8^{\frac{2}{3}}$.	Answer (b) swer space. ue $2 \times 10^{\circ}$. est form. Answer (a) (b)	222.222	[1] [1] [1]

4024/01/M/J/05

		10		
18	OAB is a $A\hat{O}B = x^{\circ}$	sector of a circle with centre <i>O</i> and r.	adius 8 cm.	A
	(a) Writ for t	te down an expression, in terms of x a the area of the sector <i>OAB</i> .	and π ,	$O \xrightarrow{x^{\circ}} B = B$
	(b) PQR The this Calc	R is a semicircle of radius 4 cm. area of the sector <i>OAB</i> is $\frac{1}{3}$ of the semicircle. sulate the value of x.	area of	P 4 4 R Q
			Answer (a)	cm ² [1]
			(b) x =	=[2]
19	ABCDE isThe baseThe slopis $AB = AC$ (a)Calc(b)The BCD (i)(ii)	s a pyramid. BCDE is a square of side 10 cm. ng faces are isosceles triangles. = AD = AE = 13 cm. culate the area of the sloping face AB pyramid ABCDE is joined to an ide DEF to form the solid ABCDEF. Calculate the surface area of the sol Describe fully the locus of all po equidistant from A and F.	<i>C</i> . entical pyramid id <i>ABCDEF</i> . ints which are	$B = \begin{bmatrix} 13 \\ 10 \\ C \end{bmatrix} D$ $B = \begin{bmatrix} 10 \\ 13 \\ C \end{bmatrix} D$
				\bigvee_{F}
			Answer (a)	cm ² [2]
			<i>(b)</i> (i).	cm ² [1]
				······· [-]

4024/01/M/J/05

- 22 (a) The diagram in the answer space is a sketch of the graph of $y = \frac{3}{x}$ for x > 0. Complete the sketch for x < 0.
 - (b) Sketch the graph of y = x on the diagram in the answer space.
 - (c) The graphs of $y = \frac{3}{x}$ and y = x meet at x = k. Find the values of k.

4024/01/M/J/05

© UCLES 2005

- 24 In triangle PLQ, PL = 14 cm, PQ = 10 cm and LQ = 7 cm. The line PL is drawn in the answer space.
 - (a) Using ruler and compasses only, complete triangle *PLQ* where *Q* is above *PL*.
 - (b) Measure and write down $P\hat{Q}L$.
 - (c) Draw a semicircle with *PL* as diameter. The line *LQ* produced meets the semicircle at *M*. Measure and write down the length of *QM*.
 - (d) (i) Explain why *PM* is perpendicular to *LM*.
 - (ii) Hence write down the value of $\cos P\hat{Q}L$.

Answer (a)

Р	Ĺ [1]
	Answer (b) $P\hat{Q}L =$
	(c) QM =cm [1]
(<i>d</i>)(i)	[1]
	(ii) $\cos P\hat{Q}L = \dots [1]$

4024/01/M/J/05

r's	15
25	The trapezium <i>PQRS</i> has one line of symmetry. $S\hat{P}Q = 120^{\circ}$.
	(a) Explain why $P\hat{S}R = 60^{\circ}$.
	Answer (a)[1]
	(b) Three trapezia, each congruent to <i>PQRS</i> , are placed together as shown.
	D C $FShow that KDE is an equilateral triangle$
	Show that KDP is an equilateral triangle.
	Answer (b)
	[1]
	(c) Given also that $BC = 1 \text{ m}$, $AB = 4 \text{ m}$ and $DC = 5 \text{ m}$, find
	(i) the length of GB ,
	(ii) the ratio Area ΔKDF : Area ΔHGB ,
	(III) the shaded area as a fraction of the area of ΔKDF .
	Answer (c)(i)m [1]
	(ii) :
	(iii)[1]
UCLES 20	05 4024/01/M/J/05 [Turn ov

26 (a) Factorise 3tx - 2sx + 15ty - 10sy.

(b) Solve the equation
$$\frac{x-2}{4} + \frac{x+1}{3} = 1$$
.

(c) Factorise $2y^2 - 3y - 2$.

Answer	<i>(a)</i> [[2]
	(<i>b</i>) <i>x</i> =	[2]
	(c)[[2]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2005

4024/01/M/J/05

www.xtremepapers.net

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

General Certificate of Education Ordinary Level

MARK SCHEME for the June 2005 question paper

4024 MATHEMATICS

4024/02

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2005 question papers for most IGCSE and GCE Advanced Level syllabuses.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The following abbreviations may be used in a mark scheme or used on the scripts:

A.G.	Answer given
b.o.d.	Benefit of doubt
c.a.o	Correct answer only
(in)dep	(In) dependent
Ex.Q.	Extra question
~	Follow through
x	Further error made
I.S.W.	Ignore subsequent working
M.R.	Misread
o.e.	Or equivalent
O.W.	Omission of essential working
P.A.	Premature approximation
S.C.	Special case
s.o.i	Seen or implied
S.O.S.	See other solution
t.&e.	Trial and error
W.W.	Without working (i.e. answer only seen)
W.W.W.	Without wrong working
(£) or (°)	Condone the omission of the £ or degree sign etc.

JUNE 2005

GCE O LEVEL

MARK SCHEME

MAXIMUM MARK: 100

SYLLABUS/COMPONENT: 4024/02

MATHEMATICS PAPER 2

P	age 1		Mark Scheme					is Paper
			GCE O LEVEL -	- JUNE 20	005		4024	2
1	(a)	<i>(</i> i)	9 – 50	B1			1	
1	(a)	(1) (ii)	$3 - 3p^{2}$	B1	+5ar	B1	2	
		(")	5y - 2i	51	· oqi	51	-	
	(b)		2(3t + 1)(3t - 1)	B2			2	SC1 for any
	(6)		2(01 - 1)(01 - 1)	DL			-	incomplete
								(correct)
								factorisation
	(c)	(i)	30	B1			1	
		(ii)	$3x^2 = 75$	M1	$x = \pm 5$	A1	2	x = 5 (or -5)
		()	$10 - 2x^2$		4		~	Implies M1
		(111)	$y - 18 = 3x^{-1}$	IVIT	$x = \frac{1}{\sqrt{2}}(y-1)$	8) A1	2	
					V 3 °	,	10	
							10	
2	(2)	(i)	150 (a)	R1			1	
-	(u)	(i) (ii)	450 : 550 or better	M1	9:11	A1	2	9
		()			0		-	Accept $\frac{3}{11}$ etc.
								SC1 for 11 : 9
		(iii)	' <i>their</i> ' 150 + 450	M1	48%	A1	2	
		. ,	1250 (figs)					
	(b)	(i)	(\$) 3.60	B1			1	
		(ii)	Idea that $6.20 = 80\%$	M1	\$7.75	A1	2	
							8	
		<i>(</i> 1)	4 00	D 4				
3	(a)	(1)	t = 69	B1			1	
		(II) (iii)	u = 57 y = 72	DI B1			1	
		(iv)	v = 15	B1			1	
		()	y .c	2.				
	(b)		3z + 3 x 105	M1	z = 135	A1	2	N.B. Alt. method
	. ,							using pentagon.
	(c)	(i)	12 (cm)	B1		• •	1	
		(11)	$\frac{18}{12} = \frac{14}{12}$ (or $\frac{his}{12}$)	M1	15 (cm)	A 1	2	
			PS 18 18				0	
							9	
4	(a)	(i)	20	M1	34.8 – 35 (cm) A1	2	
	(~)	(.)	$\frac{20}{\cos 55}$,		
		(ii)	'their'	B1 🖍			1~	
		. /	34.9 + 20 = 54.8 – 35 (cm)				1075830	
		(iii)	20 sin 55	M1	16.3 – 16.4	A1	2	
	<i>.</i> .			.	• • • • •	0 = 0		
	(b)		Arc of circle	B1	Centre C <u>or</u> 12	25°	2	
					<u>or</u> $r = 20$	В1		
	(c)		125	М1	436-4366	Δ1	2	
	(0)		360	141 1	-10.0 - 40.00		2	
			300				9	
L							5	

© University of Cambridge International Examinations 2005

Р	age 2		Mark Sch	eme			Syllabu	s Paper
			GCE O LEVEL –	JUNE 20	05		4024	2
							1	
5	(a)	(i)	Mode = 0	B1			1	If 0 and 8 mentioned, 0 must clearly be the intended
		(ii) (iii)	Median = 1 Mean = $\frac{(0 \times 8) + (1 \times 5) + \dots}{8 + 5 + \dots}$	B1 M1	= 1.6	A1	1 2	Accept $\frac{8}{5}$, $1\frac{3}{5}$, $1\frac{6}{10}$
	(b)	(i)	$p = \frac{1}{5}, q = 1, r = 0$ o.e	B2			2	Allow B1 for any 1 correct.
		(ii)(a)	$\frac{2}{7}$	B1			1	
		(b)	<u>4</u>	B1			1	
		(c)	21 $\frac{4}{7}$ or 'their' $\frac{4}{21} \times 3$	B2 🖍			2 - ^	SC1 for 3 x their $\frac{4}{21}$ or for $\frac{8}{21}$
							10	
6	(a)		73 – 37 = 36	B1			1	
	(b)		Any other 3 pairs	B1			1	
	(c)		Multiples of 9, digits add up to 9	B1			1	
	(d)	(i) (ii)	10x + y 10x + y - (10y - x)	B1 M1	= 9 <i>x</i> - 9 <i>y</i>	A1	1 2 6	
7	(a)		$2x^2 = 500$	M1	15.8 – 15.82 ((cm) A1	2	
	(b)		$\frac{1}{3} \times 150 \times h = 500$	M1	10 (cm)	A 1	2	
	(c)		$\frac{4}{3}\pi^{3} = 500$	M1	4.9 – 4.925 (c	m) A1	2	
	(d)		Use of <i>R</i> and <i>R</i> + 1.5 o.e	M1	or Use of R+	<u>1.5</u> 2		
			Area of x section = $\pi \left[(R+1.5)^2 - R^2 \right]$	A1	Area of x sect = $2\pi \left[R + \frac{1.5}{2} \right] \times 1$	ion .5 A1		
			Area of <i>x</i> section = $\frac{500}{6}$	B1	L 2]			
	(e)		$R = 8 - 8.1$ (cm) $\left(\frac{2}{5}\right)^{3}$	B1 M1	32 (cm ³)	A 1	4 2	
							12	

© University of Cam International Examinations 2005 pridge

	Page 3	3	Μ	lark S		Syllabus	Paper		
			GCE O L	EVEL	_ – JUNE 20	05		4024	2
								Γ	
8	(a)		Scales	S 1					
			All 10 points correctly	-					
			plotted (within 1 mm)	P1					
			Smooth curve						
			Inrough points				2	Loot for atra	vight lines
			(allow marginally incorroct points)	C1			3	LUST IOF STR	arocchy thick
				C1				incomplete,	grossiy trick
	(b)	(i)	Negative value	Т1					
	(~)	(•)	0.32 to 0.45	т1					
		(ii)	Rate at which water	••			3		
		()	level is changing or				_		
			fall of water level						
			per hour o.e	R1					
	(c)	(i)	4 (m)	B1					
		(ii)	Straight line through	L2				Allow (L1) f	or any st. line
			(0,4) and (6,2)					through (0,4	1) with <i>-ve</i>
		/:::\	Their O their 1.0	N/ 4	75 95	A 4		gradient	
		(III) (iv)	111011 Z - 111011 1.Z		75 - 65	AI	6		
		(1)	5.7 - 5.9	ы			12		
							12		
9	(a)	(i)	sin <i>D</i> sin118	М1	6	600 sin 118		All M and A	marks
-	()	(-)	$\frac{600}{600} = \frac{950}{950}$		$\Rightarrow \sin D = -$	950		available fo	r any
						M1		COMPLET	Ealternative
			$\hat{D} = 33.89 - 33.9 \Rightarrow$	A1				methods.	
			P = 28.1 + 28.11	A1			~1		
			B = 20.1 - 20.11						
		(ii)	(02 - 0.00) $(CD^2 = 1040^2 + 950^2 = 1040^2$	_ (or+)(2) 1040 95	$50 \cos 42$		NB	
		(11)	(0D -) 10+0 + 300 =	(01)	/2/1040.00	M1		104	$0^{2} + 950^{2} - CD^{2}$
								$\cos 42 =$	$\frac{2 \times 1040 \times 950}{2 \times 1040 \times 950}$
								aets the firs	t M1
			$CD^2 = 1040^2 + 950^2 - 1000^2 + 950^2 - 1000^2 + 1000^2 + 1000^2 - 1000^2 + 1000^2 - 1000^$	2.10	40.950 cos	42 M1			
			= 515000 - 516000	A1					
			<i>CD</i> = 716 – 719 (m)	A1			4		
		(iii)	CN = 1040 sin 42	M1					
			0.e				_		
			=695 – 696 (m)	A1			2		
	(b)		Angle of Den =	М1					
	(0)		500	IVI I					
			$\tan^{-1} \frac{000}{their 696}$						
				۸4			0		
			- 33.0 - 33.73	AI			∠ 12		
L							14	1	

P	age 4		Mark	5	Syllabus	Paper			
			GCE O LEVE	L – Jl	JNE 2005			4024	2
10	(a)		20	B1					
			x						
	4.			D 4					
	(D)		$\frac{25}{x+2}$	B 1					
			X + Z						
	(c)		$\frac{20}{20} - \frac{25}{20} - (+)1\frac{1}{20}$	M1					
			$x + 2^{-(-)} 2$						
			40(x+2) - 50x = 3x(x+2)	IVI 1			F		
			$\Rightarrow 3x^2 + 16x - 80 = 0$	AI			ວ	N.B. A.G	
	(d)		For numerical $p \pm (\text{or} + \text{or})$	-),/a				If 'comple	eting the
),,,,,				squaro' u	$\left(x + \frac{8}{2}\right)^2 \mathbf{P1}$
								Square u	$\left(\begin{array}{c} x + \frac{1}{3} \end{array} \right)$ D
			p = -16 and $r = 6$	B1				33.7	B1
			q = 1216 or	R1					
			$\sqrt{q} = 34.8 - 34.9$		0.470	D4	4	004 for (1 0 0 and
			<i>x</i> = 3.145	BI	-8.479	B1	4	-8.4 to -	8.1 – 3.2 and 8.5
	(e)		Time up 20	M1	25	М1		Implied b	y 6.3
			3.145		5.145	141.1	-	and 4.8	
			11 h 13 min or 673 min	A1			3 12		
							12		
11	(a)	(i)	Reflection	B1	y = -x	B1			
		(ii)	$\begin{pmatrix} 0 & -1 \end{pmatrix}$	B1			3		
			(-1 0)						
	(h)	(i)	(-1.3)	B1					
	()	(ii)	(0,-1)(x) (1)	M1					
			$\begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} y \end{pmatrix}^{=} \begin{pmatrix} 2 \end{pmatrix}$						
			<i>K</i> is (2, –1)	A1			3		
		(iii)	Rotation	B1			2		
			(or 270° CW)	DI			2		
		(iv)	$\begin{pmatrix} 1 & 0 \end{pmatrix}$	B2			2	SC1 for F	Reflection in <i>x</i>
1			(0 -1)					axis	
1		<i>(</i>)		- ·					_
1	(c)	(i)	1:9	B1				Accept -	$\frac{2}{2}$ etc.
1		(ii)	27	B1			2	1	ō
		()		- •			12		

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

General Certificate of Education Ordinary Level

MARK SCHEME for the June 2005 question paper

4024 MATHEMATICS

4024/01

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- C Consolation mark, sometimes awarded for an incorrect answer. In some places it may be earned in the working.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise.
- FT implies that the candidate has continued correctly after an error.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- FT Follow through
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOI Seen or implied
- SOS See Other Solution (the candidate makes a better attempt at the same question)

June 2005

GCE O LEVEL

MARK SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 4024/01

MATHEMATICS PAPER 1

	Oynabus	гарег
GCE O LEVEL – JUNE 2005	4024	1

1	(a) (b)	0.65 c.a.o. 80(%)	1 1			2
2	(a)	$\frac{8}{24}$ c.a.o.	1	If answer decimal, accept in		
	(b)	21 24	1	If answer decimal, accept in		
		$\frac{1}{35}$ c.a.o.		working.		
				0.381 and 0.6855 to 0.686.	C1	2
3	(a)	$\begin{pmatrix} 2 & 0 \\ 2 & 2 \end{pmatrix}$	1			
	(b)	$\begin{pmatrix} 0 & 2 \end{pmatrix}$	1			
	(0)	$\frac{1}{2} \begin{pmatrix} 4 & 2 \\ 1 & 1 \end{pmatrix}$ o.e.	•			2
4	(a) (b)	348 ^(°) 218 ^(°)	1 1			2
5	(a)	(\$) 12.32	1	Not 12		_
				25 After 12.3. accept 12.32 in		
	<i>(</i> L.)	40 (h)		working.		
6	(D)	10 (n)	1			2
0	(a) (b)	$(\pm) 5000$ 20 (cm)	1			2
7	(a)	39 (h)	1			_
	(b)	(\$) 145(.00)	1			2
8		$\frac{3x+1}{2}$ o.e.	2	After clear MR, M1 available.	C1	
		2		$ax + b$ with $a = \frac{3}{2}$ $b \neq 0$		
				or $a \neq 0$ $b = \frac{1}{2}$		
				2 Use of letter other than x -1 if		
				possible.		2
9		(x) = 33 (y =) -4	2	One correct with supporting	C1	
				Or correct method for one		
				variable reaching such as		
40		110 (minut)	~	$2x = 95 - 29 \text{ or } 2y = 3 \times 29 - 95$	M1	2
10		Accept 2 h 20 (min) or	2	2 x 5 5 x 7	111	2
		11.20 (a.m.)		Answer 280, 4h 40, 13.40 or		
				1.40 p.m.	C1	
11	(a)	Rectangle from 200 to 400,	1	Accept freehand		
	(b)	$72^{(0)}$	1			2
12	(a)	23 35	1	Ignore embellishments		-
	(b)	4 (min) 1.5 (s)	2	$\frac{4.5}{5}$ seen, or accept at $\frac{\sum times}{5}$	M1	
				3 3		
				minutes/seconds and with		
				seconds < 60.		3

© University of Cambridge International Examinations 2005

Page Z	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – JUNE 2005	4024	1

13	(a)		(5,1/2) or (5,0.5)	1			
	(b)	(i)	Parallel line through (0,-4)	1	Ruled or good freehand, > 4 cm		
					long. Cutting <i>x</i> axis between		
					(11,0) and (13,0), produced if		
		(ii)	12 c a o	1	necessary.		3
14	(a)	()	128 ^(o)		Accept on diagram if necessary		Ŭ
	(b)		$26^{(\circ)}$ or $\frac{1}{2}(180 - a)^{\circ}$ f.t.	1	Accept on diagram if necessary		
	(c)		64 ^(o) or ½ their (a) f.t. or 90-	1	Accept on diagram if necessary		
			their (b) f.t.				3
15	(a)		132	1	Condone -87		
	<i>(</i> L)			1			
	(D)		219 or $\{ \text{their}132 + \text{their}87 \}$	1			3
16	(a)		Units digit ranged	1			
	(b)		1 <u> </u>	1			
			20				_
47	(c)		$\frac{4}{744}$	1			3
17	(a) (b)		74.4 to 74.7 (Kg)	1			
	(D) (C)		23 to 25	1			3
18	(a)		X 2 ² 1 1	1			Ŭ
	. ,		$\frac{1}{360}\pi$ 8 ² or better seen		Accept $-$ for π .		
			(cm ²)				
	(b)		15 ^(°) (accept 14.9 to 15.1)	2	$1 \pi 4^2$	M1	
					Their (a) = $\frac{1}{3} \times \frac{2}{2}$ o.e. seen		3
19	(a)		60 (cm²)	2	$\sqrt{13^2 - 5^2}$ s.o.i.	M1	_
	(b)	(i)	480 or 8 x their (a) f.t. (cm ²)	1			
	. ,	(ii)	Plane BCDE	1	Accept clear indication of correct		
					plane		4
20	(a)	(i)	$ -1 < x \le 4$	1	Accept in other form if equivalent		
		(11)	3	1	Line must go to $x = 3$ or further or show an indication it continues		
	(b)		(1,3) (1,5) (3,5) (5,3)	2	At least two pairs correct	C1	
	()		Accept without brackets if	-	Any extra pairs or terms, -1.	•	
			pairs clear				4
21	(a)		Enlargement	1	No other transformation stated or		
			Scale factor -2 den	1	Implied		
	(b)		(12)	2	(3) (3) (6) (3)	M1	
	(~)		$\begin{vmatrix} 1 \\ -1 \end{vmatrix}$		$\begin{vmatrix} 0 \\ -4 \end{vmatrix} + k \begin{vmatrix} 0 \\ 1 \end{vmatrix}, \begin{vmatrix} 0 \\ -3 \end{vmatrix} + k \begin{vmatrix} 0 \\ 1 \end{vmatrix},$		
					$\left \begin{pmatrix} -0\\ 8 \end{pmatrix} + k \begin{pmatrix} 0\\ -3 \end{pmatrix} \right $ or		
					$k\binom{6}{-8} + \binom{3}{1} + k'\binom{6}{-3} + \binom{-6}{1}$		4

© University of Cambridge International Examinations 2005

Mark Scheme	Syllabus	Paper
GCE O LEVEL – JUNE 2005	4024	1
	Mark Scheme GCE O LEVEL – JUNE 2005	Mark SchemeSyllabusGCE O LEVEL – JUNE 20054024

22	(a)		Correct sketch for $x = 0$	1	No incorrect lines for (a) or (b)		
					eye. Long enough to cut both		
	(b)		line $v = x$ sketched	1	branches		
	(C)		$\sqrt{3}$ $-\sqrt{3}$	1	Accept clear attempts, e.g. 1.7.	M1	
					After 0+0, x^2 = 3 or k^2 = 3 seen		4
23	(a)		Ruled straight lines (0,0) to	1			
			(40,18)				
	(b)	(i)	$\frac{3k}{1000}$ or 0.6 (m/s ²) ft	1	Follow through from their graph		
			5k	(≠0)			
		(ii)	11.25, 11¼ or $\frac{45k}{2}$ (m/s)	2 Accept 11.2 or 11.3		M1	
			4 <i>k</i> 4 <i>k</i>		$\frac{7}{2}$ 30 X their 18 s.o.i.		4
24	(a)		Triangle drawn, with arcs	1	Sides 10 ± 0.4 cm. 7 ± 0.4 cm		-
	()		visible	_			
	(b)		108 ^(°) to 111 ^(°)	1			
	(c)	<i>(</i> 1)	3.2 to 3.5 (cm)	1	Dep on semicircle		
	(a)	(1)	Angle in semicircle	1	No incorrect reason. Diameter		
		(ii)	their(c)	1	3.5		
			$-\frac{10}{10}$ f.t.		Accept for example $-\frac{10}{10}$		
					Accept $-\frac{47}{}$		
					140		5
25	(a)		Interior angle (parallel lines)	1	Accept clear equivalents provided		
	(b)		or angle sum of quad D = F = K (= 60)	1	symmetry correctly quoted.		
	(0)		O = V = K(= 00) Or DC + CF = FE + EK =	•	DF = FK = KD alone not enough.		
			KA + AD				
	(c)	(i)	3 (m)	1			
		(ii)	4 <i>k</i> :1 <i>k</i>	2	Accept $\frac{4}{1}$ or 4.		
					25k:9k or k:4k	C1	
					Or attempt at (<i>DF</i> : <i>GB</i>) ²	M1	
		(iii)	$\frac{3k}{1}$ ft (kinteger)	1	Follow through from (ii)		
			4 <i>k</i>		But not for 1/2 after 2:1		6

Page 4	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – JUNE 2005	4024	1

26				(a), (c) Condone missing outside		
				brackets, "= 0" and use of wrong		
				letter if clear. If only solutions		
				(even incorrect) in answer space,		
				give marks if factors seen.		
	(a)	(3t-2s)(x+5y) o.e.	2	Complete correct extraction of	M1	
				one factor such as 3 <i>tx</i> -2 <i>sx</i> +		
				5t(3y-2s)		
	(b)	2	2	3(x-2) + 4(x+1) = 12 or better	M1	
				s.o.i. (condone missing brackets		
				for M1)		
	(c)	(2y + 1)(y − 2) o.e.	2	(2y-1)(y+2) o.e.	C1	
				$3\pm\sqrt{25}$,		
				or <u>4</u> or better seen	M1	6

UNIVERSITY Gen	OF CAMBRIDGE INTERNATIO	ONAL EXAMINATIONS
MATHEMATICS (SYLLABUS D)		4024/02
Paper 2		May/June 2004
Additional Materials:	Answer Booklet/Paper Electronic calculator Geometrical instruments Graph paper (2 sheets) Mathematical tables (optional)	2 hours 30 minutes

READ THESE INSTRUCTIONS FIRST

Write your answers and working on the separate Answer Booklet/Paper provided. Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A Answer all questions.

Section B

Answer any **four** questions.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

Show all your working on the same page as the rest of the answer.

Omission of essential working will result in loss of marks.

The total of the marks for this paper is 100.

You are expected to use an electronic calculator to evaluate explicit numerical expressions. You may use mathematical tables as well if necessary.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

This document consists of 11 printed pages and 1 blank page.

SP (NF/GR) S64038/4 © UCLES 2004 UNIVERSITY of CAMBRIDGE

[Turn over

Section A [52 marks]

Answer all the questions in this section.

- 1 Two villages, *P* and *Q*, are joined by a straight road 6000 m long.
 - (a) Ann left P and ran to Q at a steady speed of 3 m/s. At the same instant that Ann left P, Ben left Q and cycled to P at a steady speed of 7 m/s. (a) How far, in metres, did Ann travel in the first 2 minutes? [1] (i) (b) Calculate the distance between Ann and Ben at the end of the first 2 minutes. [1] Ann and Ben passed each other at *M*. (ii) Calculate the distance PM. [2] (iii) Calculate the time that Ben took to cycle from Q to P. Give your answer in minutes and seconds, correct to the nearest second. [2] (b) The villages appear on a map which has a scale of 2 cm to 5 km. Express this scale in the form 1 : *n*. (i) [1] (ii) Calculate the length of the road joining *P* and *Q* on the map. [2]
- 2 (a) Factorise completely 2tv + t 10v 5.
 - (b) Make *k* the subject of the formula

$$\sqrt{\frac{h}{k}} = 3.$$
 [2]

[2]

- (c) Solve the equation $x^2 23x + 81 = 0$, giving both answers correct to two decimal places. [4]
- (d) The matrix **Y** satisfies the equation

$$4\mathbf{Y} - 2\begin{pmatrix} 12 & 6\\ -9 & 0 \end{pmatrix} = \mathbf{Y}.$$

Find **Y**, expressing it in the form $\begin{pmatrix} a & b\\ c & d \end{pmatrix}$. [2]

4024/02/M/J/04

3 (a) The diagram shows a trapezium *ABCD*.

Angle ABC and angle BCD are right angles.

$$AB = 9 \text{ cm}, BC = 4 \text{ cm}, CD = 6 \text{ cm} \text{ and } DA = 5 \text{ cm}.$$

The perpendicular distance from B to AD is h centimetres.

Calculate

- (i) the area of the trapezium,
- (ii) the value of h,
- (iii) angle DAB.
- (b) The diagram shows two triangles, *PRS* and *PRQ*.

$$PR = 8 \text{ cm}, QR = 8.5 \text{ cm}, P\hat{S}R = 90^{\circ},$$

 $P\hat{R}S = 51^{\circ} \text{ and } R\hat{P}Q = 95^{\circ}.$

[1]

- [2]
 - [2]

	Q	
(i)	Calculate RS.	[2]
(ii)	Calculate $P\hat{Q}R$.	[3]
(iii)	A circle is drawn through P, R and S.	
	(a) Does this circle pass through Q?Give a reason for your answer.	[1]
	(b) Where is the centre of this circle?	[1]

4024/02/M/J/04

[Turn over

4 (a) Show that the interior angle of a regular pentagon is 108°.

The diagram shows two congruent, regular pentagons, ZABTX and ZCDTY.

(i) Describe fully all the symmetries of this diagram.	[2]
--	-----

- (ii) What is the special name given to the quadrilateral *ZXTY*? [1]
 - (iii) Calculate reflex angle *ZYT*. [1]
- (iv) Calculate angle AZY.

(c)

(b)

In the diagram, *PQR* is a triangle with $P\hat{Q}R = 90^{\circ}$ and $Q\hat{R}P = 40^{\circ}$.

The point O is the midpoint of QR.

Triangle $P_1Q_1R_1$ is the image of triangle *PQR* under an anticlockwise rotation about the point *O*. The point R_1 lies on *PR*.

The line QR intersects the line P_1R_1 at the point *S*. Find

- (i) $R\hat{R}_1Q_1$, [1]
- (ii) the angle of rotation,
- (iii) $O\hat{S}P_1$.

4024/02/M/J/04

www.xtremepapers.net

[1]

[1]

[1]
In a group of 100 students, 80 study Spanish and 35 study French.
 x students study Spanish and French.
 y students study neither Spanish nor French.
 The Venn diagram illustrates this information.

(a)	Exp Exp	ressed in set notation, the value of x is $n(S \cap F)$. ress the value of y in set notation.	[1]
(b)	Fine	I, in its simplest form, an expression for y in terms of x .	[2]
(c)	Fine	1	
	(i)	the least possible value of <i>x</i> ,	[1]
	(ii)	the greatest possible value of <i>y</i> .	[1]

4024/02/M/J/04

[Turn over

6 Bob makes fences using identical metal rods one metre long. The rods are bolted together at their ends.

Some fences, with different lengths, are shown below.

Length = 1 m

Length = 2 m

Length = 3 m

Length = 4 m

• shows the position of a bolt.

The table shows the numbers of bolts and rods used for various lengths of fence.

	Length (metres)	1	2	3	4		n		
	Number of bolts	bolts 5 8		11 p		•••••	В		
	Number of rods61320 q		R						
(a) (b)	 Write down the values of p and q. Given that B = 3n + k, where k is a constant, find the value of k. 								
(c)	Find an expression for <i>R</i> in terms of <i>n</i> .								
(d)) Bob has 200 bolts and 400 rods.								
	How many complete fences can he make which have a length of 6 m?								

4024/02/M/J/04

Section B [48 marks]

7

Answer **four** questions in this section.

Each question in this section carries 12 marks.

7 [The surface area of a sphere is $4\pi r^2$.]

[The volume of a cone is $\frac{1}{3} \times$ base area \times height.]

[The area of the curved surface of a cone of radius *r* and slant height *l* is πrl .]

A drinking glass consists of a hollow cone attached to a solid hemispherical base as shown in the diagram.

The hemisphere has a radius of 3 cm.

The radius of the top of the cone is 4 cm and the height of the cone is 16 cm.

(a)	Cal	culate the total surface area of the solid hemispherical base.	[3]
(b)	Cal	culate the curved surface area of the outside of the cone.	[3]
(c)	(i)	The cone contains liquid to a depth of <i>d</i> centimetres.	
		Giving your reasons , show that the radius of the surface of the liquid is $\frac{1}{4}d$ centimetres.	[1]
	(ii)	The cone is completely filled with liquid.	
		Calculate the volume of the liquid.	[2]
	(iii)	Half of the volume of the liquid from the full cone is now poured out.	
		Using the answers to parts (i) and (ii), find the depth of the liquid that remains in the cone	». [3]

© UCLES 2004

4024/02/M/J/04

[Turn over

8 Answer the whole of this question on a sheet of graph paper.

The table gives the *x* and *y* coordinates of some points which lie on a curve.

x	1	1.5	2	2.5	3	4	5	6
у	140	110	100	98	100	110	124	140

- (a) Using a scale of 2 cm to represent 1 unit, draw a horizontal *x*-axis for 0 ≤ x ≤ 6.
 Using a scale of 2 cm to represent 10 units, draw a vertical *y*-axis for 90 ≤ y ≤ 150.
 On your axes, plot the points given in the table and join them with a smooth curve.
- (b) Use your graph to find
 - (i) the value of y when x = 4.5, [1]
 - (ii) the values of x for which y = 128. [1]
- (c) By drawing a tangent, find the gradient of the curve at the point where x = 1.5. [2]
- (d) The line y = k is a tangent to the curve.

Find the value of *k*.

(e) The values of x and y are related by the equation

$$y = \frac{A}{x} + Bx.$$

(i) Use the fact that the point (2, 100) lies on the curve to show that

$$200 = A + 4B.$$
 [1]

[3]

[1]

(ii) Obtain a second equation connecting *A* and *B*.Hence calculate the value of *A* and the value of *B*. [3]

4024/02/M/J/04

Diagram I shows a triangle ABC in which AB = 7 cm, AC = 8 cm and $B\hat{A}C = 120^{\circ}$.

- (a) Show that BC = 13 cm.
 - (b) Calculate the area of triangle *ABC*.

Diagram II

The sides of the triangle ABC, shown in Diagram I, are tangents to a circle with centre O and radius r centimetres.

The circle touches the sides BC, CA and AB at P, Q and R respectively, as shown in Diagram II.

(i) Find an expression, in terms of <i>r</i> , for the area of triangle <i>OBC</i> .	[1]
(ii	By similarly considering the areas of triangles <i>OAB</i> and <i>OAC</i> , find an expression, in terms of <i>r</i> , for the area of triangle <i>ABC</i> .	[2]
(iii) Hence find the value of <i>r</i> .	[2]
(d) C	alculate the percentage of the area of triangle ABC that is not occupied by the circle.	[3]

(c)

4024/02/M/J/04

[2]

[2]

10 Answer the whole of this question on a sheet of graph paper.

The ages of a sample of 40 students were recorded. The results are given in the table below.

Age (x years)	$8 < x \le 10$	$10 < x \le 11$	$11 < x \le 12$	$12 < x \le 14$	$14 < x \le 16$	$16 < x \le 19$
Frequency	7	8	6	10	3	6

(a)	Using a scale of 1 cm to represent 1 year, draw a horizontal axis for ages from 8 to 19 years. Using a scale of 1 cm to represent 1 unit, draw a vertical axis for frequency densities from 0 to 8 units.	
	On your axes, draw a histogram to illustrate the distribution of ages.	[3]
(b)	In which interval does the median lie?	[1]
(c)	Calculate an estimate of the mean age of the students.	[3]
(d)	Calculate an estimate of the number of students who were under 13 years old.	[1]
(e)	One student is chosen at random from this sample of 40 students.	
	Write down the probability that this student is	
	(i) under 8,	[1]
	(ii) over 16.	[1]
(f)	A second student is now chosen at random from the remaining 39 students.	
	Calculate the probability that one student is over 16 and the other is not over 16. Give your answer as a fraction in its lowest terms.	[2]

4024/02/M/J/04

11 (a) In a swimming match between two schools, C and D, two students from each school took part in each event.

The number of places each school gained in each position is shown in the table.

	First	Second	Third	Fourth
School C	6	3	5	6
School D	4	7	5	4

The points awarded for First, Second, Third and Fourth places were 5, 3, 1 and 0 respectively.

Matrices related to this information are defined below.

$$\mathbf{A} = \begin{pmatrix} 6 & 3 & 5 & 6 \\ 4 & 7 & 5 & 4 \end{pmatrix} \text{ and } \mathbf{B} = \begin{pmatrix} 5 \\ 3 \\ 1 \\ 0 \end{pmatrix}$$

- What does the sum of the elements in each column of A represent? [1] **(i)** (a) Find AB. (ii) [2]
 - (b) What information is shown by **AB**? [1]
- (iii) It was suggested that the points awarded for First, Second, Third and Fourth places should have been 5, 3, 2 and 1 respectively.

Would this suggestion have made any difference to which school won this match? Show clear working to justify your answer. [1]

(b) In the diagram,

- [1] (iii) Express \overrightarrow{QY} in terms of k, p and q. [1] (iv) Given that OX is parallel to QY, find the value of k. [2]
- The line OX, when produced, meets PY at Z. **(v)** Express \overrightarrow{PZ} in terms of **q**.

4024/02/M/J/04

www.xtremepapers

BLANK PAGE

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

4024/02/M/J/04

Centre Number	Candidate Number	Name
UNIVERSI	TY OF CAMBRIDG General Certificate	SE INTERNATIONAL EXAMINATIONS
MATHEMATIC	CS (SYLLABUS I	D) 4024/01
Paper 1		May/June 2004
Candidates answe	ar on the Question Par	2 hours
Additional Materia	Is: Geometrical instr	uments
READ THESE INSTRUCT Write your Centre number Write in dark blue or black You may use a pencil for a Do not use staples, paper Answer all questions. The number of marks is g If working is needed for ar Omission of essential wor The total of the marks for NEITHER ELECTRONIC PAPER.	FIONS FIRST c, candidate number and c pen in the spaces pro- any diagrams or graph clips, highlighters, glu iven in brackets [] at t ny question it must be a king will result in loss of this paper is 80. CALCULATORS NO	Ind name on all the work you hand in. wided on the Question Paper. s. e or correction fluid. the end of each question or part question. shown in the space below that question. of marks. IN MATHEMATICAL TABLES MAY BE USED IN THIS
If you have been given a la details. If any details are in missing, please fill in your in the space given at the to Stick your personal label h provided.	abel, look at the ncorrect or correct details op of this page. here, if	For Examiner's Use
SP (SM/GR) S65133/4 © UCLES 2004	This document of UNIVE	onsists of 16 printed pages. ERSITY of CAMBRIDGE ational Examinations [Turn over

4024/01/M/J/04

7 A pen	dulum of length 105 cm is suspended from <i>Q</i> .					0			
Its end	Its end swings 3° on either side of the vertical from A to B.								
Takin	g $\pi = \frac{22}{7}$, calculate the length of the arc <i>AB</i> .				105	3° 3°			
	An	swer							
8 Expre	ss as a single fraction in its simplest form $\frac{x}{x}$	$\frac{2}{-3} - \frac{1}{x}$	$\frac{1}{2}$.						
	An	swer				[2			
9 Some day. T	An children were asked how many television pro 'he table shows the results.	swer	they h	ad wa	tched	on the previou			
9 Some day. T	An children were asked how many television pro The table shows the results.	grammes	they h	ad wa	tched of 3	on the previou			
9 Some day. T	An children were asked how many television pro The table shows the results. Number of programmes watched Number of children	swer grammes 0 7	they h	ad wa	tched of 3	on the previou			
9 Some day. T (a) I (b) I	An children were asked how many television pro he table shows the results. Number of programmes watched Number of children f the median is 2, find the value of y. f the median is 1, find the greatest possible va	grammes	they h	ad wa	tched of a state of a	[2 on the previou			

4024/01/M/J/04

For 5 For Examiner's Examiner's Use Use (a) Express 217.3×10^2 in standard form. 10 (b) Arrange the following numbers in order starting with the smallest. 217.3×10^2 , 22.6×10^3 , 0.031×10^5 , 2.5×10^4 . Answer (b), [2] A function f is defined by $f: x \mapsto \frac{x+5}{3}$. 11 (a) Given that $f: 1 \mapsto k$, find the value of k. (b) Given also that $f^{-1}: x \mapsto cx + d$, find the value of c and the value of d. Answer (a) $k = \dots [1]$ (*b*) $c = \dots d = \dots [2]$ It is given that x = -3.5, y = 1.5 and z = 4.5. 12 (a) Find the value of x - z. (b) Given also that (y + z) : t = 4 : 15, find the value of t.

4024/01/M/J/04

www.xtremepapers.net

[Turn over

4024/01/M/J/04

www.xtremepapers

[Turn over

		o
16	(a)	Maryam's height is 1.52 m correct to the nearest centimetre. State the lower bound of her height.
	(b)	The length of each of Maryam's paces is 0.55 m. She walks at a constant speed of 2 paces per second. Calculate the distance, in kilometres, that she walks in one hour.
		Answer (a)[1 (b)
17	Solv	we the equation $\frac{4}{x+3} = \frac{x-1}{3}$.
		Answer[3]
18	The The leng The Calc	Answer
18	The The leng The Calc	Answer

4024/01/M/J/04

4024/01/M/J/04

www.xtremepapers.net

[Turn over

10 20 The diagram in the answer space is a map showing a section of coastline and a beacon on land. Fishing boats can only operate when they are I not more than 6.5 km from the beacon, **II** at least 2 km from the coastline. The scale of the map is 1 cm to 1 km. Construct the boundaries of the region where fishing can take place. Label this region *F*. Answer Sea Coastline Land Beacon

[4]

4024/01/M/J/04

21

- (a) The diagram shows the graphs of $y = 2^x$ and y = 2x + 1.
 - (i) State the gradient of the line y = 2x + 1.
 - (ii) Find the value of x such that x > 0 and $2x + 1 = 2^x$.

(b) The diagram shows the graph of

 $y = ka^x$.

State the value of

- (i) k,
- (**ii**) *a*.

[Turn over

4024/01/M/J/04

4024/01/M/J/04

23 (a) Factorise completely $5a^2 - 20$.

(b) A formula connecting x and y is $y = \frac{k}{x^3}$, where k is a constant. Given that y = -1 when x = 2, calculate the value of

13

(i) *k*,

(ii) *x* when y = 64.

Answer (b)(i) k = [1]

4024/01/M/J/04

[Turn over

24

A man who is 1.8 m tall stands on horizontal ground 50 m from a vertical tree.

The angle of elevation of the top of the tree from his eyes is 30° . Use as much of the information below as is necessary to calculate an estimate of the height of the tree.

Give the answer to a reasonable degree of accuracy.

 $[\sin 30^\circ = 0.5, \cos 30^\circ = 0.866, \tan 30^\circ = 0.577]$

Answer m [4]

© UCLES 2004

4024/01/M/J/04

			15
25	(a)	(i)	Express 7056 as the product of its prime factors.
		(ii)	Hence evaluate $\sqrt{7056}$.
			Answer (a)(i)
			(ii)[1]
	(b)	$\sqrt{5}_{\overline{1}}$	$\frac{1}{6}$ can be expressed as the rational number $\frac{p}{q}$ where p and q are integers.
		Fine	I the value of p and the value of q .

Answer (*b*) $p = \dots$, $q = \dots$ [1]

(c) Write down an example of an irrational number.

4024/01/M/J/04

ma	scribe fully the single transformation that ps ΔXYZ onto ΔXPQ .
Answer (a)	
(b) Tho (i)	e diagram in the answer space shows ΔABC and the point B' (9, 2). A translation maps B onto B' . Write down the column vector that represents this translation.
	Answer (b)(i)[1
(u)	 A snear in which the x-axis is invariant maps ΔABC onto ΔABC. (a) Draw ΔA'B'C' on the diagram in the answer space. (b) State the shear factor. Answer (b)(ii)(a)
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Every reasonable effort has been made to trace all copyright holders. The publishers would be pleased to hear from anyone whose rights we have unwittingly infringed.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

4024/01/M/J/04

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

General Certificate of Education Ordinary Level

MARK SCHEME for the June 2004 question papers

4024 MA	THEMATICS (Syllabus D)
4024/01	Paper 1, maximum raw mark 80
4024/02	Paper 2, maximum raw mark 100

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

TYPES OF MARK

Most of the marks (those without prefixes, and 'B' marks) are given for accurate results, drawings or statements.

- **M** marks are given for a correct method.
- **B** marks are given for a correct statement or step.
- A marks are given for an accurate answer following a correct method.

ABBREVIATIONS

a.r.t. Anything rounding to b.o.d. Benefit of the doubt has been given to the candidate c.a.o. Correct answer only (i.e. no 'follow through') Each error or omission e.e.o. f.t. Follow through o.e. Or equivalent SC Special case Seen or implied s.o.i. ww Without working Without wrong working www Indicates that it is necessary to look in the working following

a wrong answer

www.xtre<u>mepapers.net</u>

June 2004

GCE ORDINARY LEVEL

MARKING SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 4024/01

MATHEMATICS (Syllabus D) Paper 1

		Page 1	Mark S MATHEMATICS (Syl	Sch Ilabu	eme us D) – JUNE 2004	Syllabus 4024	Pap 1	er		
1	(a)	(0).07 cao		1						
	(b)	8(.00) (%)	1					2	
2	(a)	<u>2</u> cao 3		1						
	(b)	<u>19k</u> cao 21 <i>k</i>		1	Allow decimal in range (0).904 to (0)).905		2	
3	(a)	70 cao		1	(Not 70/1)					
	(b)	1 + 72 + (4 x	2) = 10	1	Both brackets needed. Ignore extra <u>pairs</u> if not v	wrong			2	
4	(a)	9 <i>x</i> ⁶		1						
	(b)	4		1	Accept ± 4, but not - 4 o	r 16 ^½		2		
5	(a)	64		1						
	(b)	58		1					2	
6	(a)	10		1						
	(b)	$\frac{1}{\text{their (a)}} \left(\frac{1}{2} \right)$	$\begin{pmatrix} 2 & 1 \\ -4 & 3 \end{pmatrix}$ or correct answer	1	Accept equivalents Both brackets essential				2	12
7		11 Accept 10.00	(from - 2.14)	2	11/2 , 5½ or 5.5)		C1	2	
			5 (110111 – 3.14 <i>)</i>		or Figs $\left(\frac{3+3}{360} \times 2 \times \pi \times 10^{10}\right)$	05) seen		M1		
8		Condone mis Final answe	ssing outside brackets and $\frac{x+7}{(x-3)(x+2)}$ or $\frac{x+7}{x^2-x-6}$	us 2	e of wrong letter if clear Correct num, but bracke denom or $2(x + 2) - (x - 3)$ oe so (x - 3)(x + 2) [Condone all missing br [Only available if some v	ts missing ir bi ackets] vorking seei	n n]	C1 M1	2	

_				
	Page 2	Mark Scheme	Syllabus	Paper
		MATHEMATICS (Syllabus D) – JUNE 2004	4024	1

9 (a)	10	1				
(b)	8	1			2	
10(a) (b)	2.173 x 10^4 cao 0.031 x 10^5 , 217.3 x 10^2 , 22.6 x 10^3 , 2.5 x 10^4 or equivalents	1 2	Accept . for x Do not accept calculator form Order reversed or Least or greatest identified Condone minor slips if intention clear	C1 C1	3	
11(a) (b)	2 (c =) 3 (x) (d =) - 5	1 1 1	One correct or ($f^1 : x$) 3x - 5 seen in working	C1 M1	3	
12(a) (b)	-8(.0) 22½ or 22.5 cao	1 2	$\frac{6}{t} = \frac{4}{15}$ oe or better seen t 15 (not just in ratio form)	M1	3	15
13(a) (b)	Ruled straight line through (0 , 0) and (157.5 , 40 000) (i) 8500 to 9000 (ii) <u>1</u> or (0).125 cao 8	1 1 1	Allow tolerance of ½ small square at points Condone 1: 8		3	
14(a) (b)	2 ¹ / ₂ , 2.5 or 5/2 y > -1, $y < x + 3$ and $y + 2x < 4$ oe Accept ≥ for > etc throughout	1 2	Ignore reference to <i>y</i> coordinate if it is -1 All inequalities reversed or Two inequalities correct	C1 C1	3	
15(a) (b)	(0)68 ⁽⁰⁾ 199 to 201 ⁽⁰⁾	1 2	Ignore embellishments (eg N 68 E) Ignore embellishments such as S 199 W Other value in range 196 to 204 or (BAC =) 109 to 111 or (BCA =) 47 to 49 or(ACS =) 19 to 21 or for S 19 to 21 W seen or implied, possibly on diagram	C1 M1	3	9

© University of Cambridge International Examinations 2004

Page 3	Mark Scheme	Syllabus	Paper
	MATHEMATICS (Syllabus D) – JUNE 2004	4024	1

16(a)	1.515 m oe	1	Unit essential in this case	01		
(d)	3.90	2	or Figs <u>2 x 0.55 x 60 x 60</u> 1000	M1	3	
17	Both 3 and -5	3	$3 \times 4 = x^2 + 3x - x \pm 3$ or better seen and $(x + 5)(x - 3)$ oe seen, condoning missing outside brackets	M1		
			or $\frac{-2 + \sqrt{64}}{2}$ obtained	M1	3	
18	40	3	$7^2 = 3^2 + l^{(2)}$ seen or implied,	M2		
			or $7^2 = 3^2 + 3^2 + \ell^{(2)}$ soi	M1		
			or 6, 7 used correctly	M1	3	
19(a)	30 (%)	2	70 (%)	C1		
			or Figs $\left(\frac{400-280}{400}\times100\right)$	M1		
(b)	(\$) 20	2	(\$) 520 (500×6×8)	C1		
			or Figs $\left(\frac{500 \times 6 \times 8}{100 \times 12}\right)$ seen, if intention	M1	4	13
			clear			
20	Circular arc, centre B, radius 6.5	1	Subtending at least 90° at B			
	One line parallel to one coast	1	Parallel by eye, 2 ± 0.5 cm from coasts as long as relevant coast or till it cuts			
	One arc of circle linking two of these	1	circle			
	Region clearly identified	1	Dep on large circular arc and 3 parallel lines, but not lost for wrong measurements Ignore superfluous lines		4	
21(a)	(i) 2 cao	1	Not 2/1			
	(ii) 2.65 to 2.7(0)	1	Ignore any attempt at $x = 0$			
(b)	(i) 0.5	1	Do not accept $x < 2.65$ Condone intrusion of y value of about 6.4			
	(ii) 3	1	Accept 1/2		4	8

© University of Cambridge International Examinations 2004

	Page 4	Ма	ark S	cheme	Syllabus		r]
		MATHEMATICS	(Sylla	abus D) – JUNE 2004	4024	1		
22(a)	(i)107(°) (ii) 34(°)		1	Accept on diagram if neces	ssary ssary			
(b) Completely correct solution		2	Any reference to angle at o 146 = 2 x 73 or CEA=2xCE or reference to angles in se soi	1	4			
23(a)	Condone m "=0", and us clear If only "solu in answer sp working spa	issing outside brackets, se of wrong letter if tions" (even incorrect) pace, award marks in ce						
(b)	<i>5(a - 2)(a -</i> (i) - 8	+ 2) oe	2 1	Incomplete factorisation se e.g. <i>5(a²</i> - 4) , <i>(5a - 1</i>	en <i>0)(a</i> + 2) etc	M1		
	(ii) - <u>k</u> or 2k	- (0).5 cao	1	No follow through. Not ± .			4	8
24	31 (m)		4	 30.6, 30.7, 30.65 or 30.8 or Appropriate diagram of add 1.8 and 50 tan 30 oe or 50 x 0 and Rounding finally to the integer provided some taken place Accept a reasonable eye logo 	or attempt to 0.577 e nearest e rounding has evel used	C3 M1 M1 M1	4	
25(a)	(i) 2 ⁴ x 3 ² (ii) (±) 84	x7 ² oe cao	2	Attempted division by sam least twice, soi Not just - 84	e prime at	M1		
(b) (c)	(p =) (±) 9, Any irration	$(q =) (\pm) 4$ nal, with no rationals	1	Any combination of + and = 3.142 does not score		5	9	
	given							

	Page 5		Ма	rk S	cheme	Syllabus	Pape	r]
		MATHEM	ATICS (Sylla	abus D) – JUNE 2004	4024	1		
26(a)	(One way) Factor 2	stretch	dep	1 1	Ignore reference to invaria No other transformation to	nt line be stated			
(b)	$(i)\binom{8}{0}$			1	Brackets essential. Not	(8,0)			
	(ii)(a) <i>A</i> ' a C' a (b) 4	at A, (4 , 0) t (-7 , -2)		1 1 1	Labels not essential if triar Labels essential if triangle Accept (good) freehand tri Indep	ngle drawn not drawn angle		6	6

June 2004

GCE ORDINARY LEVEL

MARKING SCHEME

MAXIMUM MARK: 100

SYLLABUS/COMPONENT: 4024/02

MATHEMATICS (Syllabus D) Paper 2

			Page 1		Mark Sch		200	1	Syllabus	Paper	
				WAIH	EIVIATICS (Syllab)	us D) – JUNE	2004	•	4024	۷.	Ţ
1	(a)	(i)	(a) 360 (m) (b) 4800 (m)			B1 B1	2	f.t. 5160) – their 360		
		(ii)	<u>6000 x 3</u> o.e. 10	. Μ	1 = 1800 (m)	A1	2	sc1 for	4200 or 600s	s or 10min se	een.
		(iii)	<u>6000</u> (s) 7	М	1 = 14m 17s	A1	2	Allow M	11 if 857s	een	
	(b)	(i)	1 : 250000			B1	1	Allow n	= 250000		
		(ii)	2 x <u>6</u> (figs) o 5	o.e. M	1 = 2.4 cm	A1	2	e.g. <u>60</u> 2	00 x 100 50000 NB	cept 0.024m : figs 24→M ²	1
							9		Imm	neclately	
2	(a)		(t-5)(2v+1)	o.e.		B2	2	sc1 for or if sol	any factor e.(ution aiven.	g. 2(t <i>v</i> – 5 <i>v</i>)	
	(b)		$h = 9$ or $\sqrt{h} =$	÷3√ <i>k</i>	M1 → <i>k</i> = <u><i>h</i></u>	A1	2	sc1 for	any of:	,	
	(c)		<i>k</i> For numerica	$\frac{p\pm(or+c)}{c}$	$(or-)\sqrt{q}$			$k = \frac{\sqrt{h}}{3}$	$k = \frac{h}{\sqrt{3}}$	$k = \frac{h}{3^2}$	
				1		B1		as final	answer		
			$p = 23$ and $r = a = 205$ or \sqrt{a}	= 2		B1			$(23)^2_{P1}$	1 05 01	
			x = 18.66	1 110		B1 B1	4		$\frac{1}{2}$	1.25 DT	-
	(d)		$\begin{pmatrix} 4.34 \\ 8 & 4 \end{pmatrix}$	ccent a = 8	h = 4 etc	B2	2	sc1 for or for a dec. pla sc1 for	18.6→18.7 a ny two answe aces. 3 elements c	and 4.3→4.3 ers given to 2 orrect or	2 2
			$\begin{pmatrix} -6 & 0 \end{pmatrix}$	000pr u 0,		DE	2	3	$Y = 2 \begin{pmatrix} 12 & 0 \\ -9 & 0 \end{pmatrix}$	$\begin{pmatrix} 6\\0 \end{pmatrix}$	
							10				
3	(a)	(i)	30 (cm ²)			B1	1				
		(ii)	$\frac{1}{2} \times 5h + \frac{1}{2} \times 6$	5 x 4 = their 3	30	M1	2		Dees		
			∠ ∠ or 9	sin their <i>DÂ</i>	$B \longrightarrow 7.18 {\rightarrow} 7.2$	A1			POSSI	UIE GRAD ar	iswer
		(iii)	tan <i>DAB</i> = <u>4</u> (3	or sin DAB	= <u>7.2</u> etc.) 9	M1	2			(a)(iii)	59.0
					→ 53→53.14	A1					
	(b)	(i)	cos 51 = <u>RS</u> 8	o.e. M1	$\rightarrow 5 \rightarrow 5.04$	A1	2			(b)(i)	5.56
		(ii)	<u>sin Q</u> = <u>sin 95</u> 8 8.5	<u>5</u> M1 –	→ <u>8sin</u> 95 M1 (de 8.5	ep)				(b)(ii)	77.5
					ightarrow 69.6 $ ightarrow$ 70	A1	3				
		(iii)	(a) No: <i>PQR</i> (b) Mid pt of	? ≠ 90 or equ PR	liv	B1 B1	2	Ignore	superfluous r	easoning.	
							12				

© University of Cambridge International Examinations 2004

	Page 2 Mark Scheme								Syllabus	Paper
				MATHEM	ATICS (Syllabus D)) – JUNE	<u> 200</u>	4	4024	2
4	(a)		180 – <u>360</u>	or <u>5-2</u> x 180 o.e.		M1				
			5	5	ightarrow 108°	A1 B1	2	AG		
	(b)	(i)	2 lines of s Rot. sym.	symmetry of order 2		B1 B1	2			
		(ii)	Rhombus			B1		Accept o	liamond.	
		(iii) (iv)	252°			B1	3			
	(c)	(i)	40°			B1				
		(ii)	100°			B1				
		(iii)	120°			Ы	3 10	f.t. 220 -	- their 100	f.t.
5	(a)		$n(S \cup F)'$	or n $(S' \cap F')$ or	or n() - n $(S \cup F)$	B1	1			
	(b)		y + 80 + 3	5 – <i>x</i> = 100 o.e.	$M1 \rightarrow x - 15$	A1	2			
	(c)	(i)	<i>x</i> min = 15			B1				
		(ii)	<i>y</i> max = 20			B1	2 5			
6	(a)		p = 14 q =	= 27		B1	1	<u>both</u>		
	(b)		<i>k</i> = 2			B1	1	Accept 3	3n + 2	
	(c)		7 <i>n</i> -1			B1 B1	2	Accept ι	unsimplified	
	(d)		R = 41 B = 9 fences w	= 20 /ith either <u>400</u> 41		B1		NB: 9 fe	nces without	working sc1
				or <u>200</u> 20		B1	2 6			

© University of Cambridge International Examinations 2004

			Page 3	Mark Sche	me			Syllabus	Paper]		
				MATHEMATICS (Syllabu	s D) – J	UNE	2004	4024	2			
7	(a)		2 3 ² (56.5 + 3 ² (28.2 = 84.8 - 84.)) 834	M1 M1 A1	3						
	(b)		$I = \sqrt{16^2 + 0}$ $\rightarrow CSA = 0$ $= 207 - 207$	4 ² (16.5) x 4 x 16.5 7.5	M1 M1 A1	3						
	(c)	(i)	$r = \frac{4}{d}$ or $r = \frac{4}{d}$	<u>4d</u> 16	B1	1	A.G Alternat shape or sim	ively: 4 <u>and</u> ilarity o.e.	16 with men	tion of		
		(ii)	$V = \frac{1}{3}x + x$	4 ² x 16	M1							
			= 267.9 → 2	268.2	A1	2						
		(iii)	$\frac{1}{3} r^2 d = \frac{268}{2}$	<u>i</u>	M1							
			$\frac{1}{3} \frac{d^3}{16} = \frac{268}{2}$	o.e.	M1							
			\rightarrow d = 12.69	9 – 12.7 (cm)		3 12						
8	(a)		Scales All 8 points	correctly plotted (within 1 mm)	S1 P1							
			Smooth currincorrect pts	ve through pts (allow marginally इ)	C1	3	Lost for st. lin	nes, incomple	ete, grossly t	hick.		
	(b)	(i)	116 – 117		V1		Accept (4.5,	116)				
		(ii)	1.1 – 1.2 <u>an</u>	<u>id</u> 5.2 to 5.3	V1	2	DiHo Accept (1.1 ,	128) , (5.2 ,	128)			
	(c)		suitable tan 22 – 40	gent	T1 T1	2						
	(d)		98		K1	1	(2.5 , 98) not	accepted				
	(e)	(i)	100 = <u>A</u> + 2 2	$B \rightarrow 200 = A + 4B$	E1		AG					
		(ii)	140 = A + B	$B \text{ or } 100 = \frac{A}{3} + 3B \text{ etc.}$	E1				00 1			
			A = 120	<i>B</i> = 20	B2	4	2 nd equation i	pt to solve 2 in A and B	υυ = A + 4B	and		
						12						
		Page 4		Mark Scheme						Syllabus	Paper]
----	-----	---	---	---	-------------------------------------	--------------------	----------------	----------------	-------------------------	----------------------------------	------------------------------	-------
			MAT	HEMATI	CS (Syllabus D) – JL	JNE 2	2004	4024	2		
9	(a)	$(BC^2) = 7^2 + 8^2 - (\text{or } +) (2).7.8.\cos 120 \text{ (or } BC^2 = 7^2 + 8^2 - 2.7.8 \cos 120 \rightarrow BC = 13$			cos 120 (or 60) → <i>BC</i> = 13	B1 B1	2		AG Possik	ble GRAD ar	iswers	
	(b)		Area = <u>1</u> .	7.8.sin 120			M1				(b) 2	6.62
			= 24	4.2 – 24.25 (0	cm²)		A1	2				
	(c)	(i)	<u>1</u> .13. <i>r</i> 2				B1					
		(ii)	+ <u>1</u> .7. <i>r</i> + <u>1</u> 2 2	<u>l</u> .8. <i>r</i> 2	M1 = 1	l4r	A1		f.t. 7.5r + tl	heir 6.5 <i>r</i>		
		(iii)	14 <i>r</i> = 24.: <i>r</i> = 1.728	2 3 → 1.733			M1 A1	5	<u>Complete</u> a	Ilternative me	thod M1 A1	
	(d)		24.2 – = 61 – 61	x 1.73 ² .2 (%)	M1	24.2	M1 A1	3 12				
10	(a)		Widths 2, Heights 3 All correc	1, 1, 2, 2, 3 3½, 8, 6, 5, 1½ t (inc. given s	∕₂, 2 scales)		M1 M1 A1	3				
	(b)		11 < x ≤ ′	12			B1	1				
	(c)		fx (496) M1	f (40)	M1 = 12.4 indep	A1	3	Allow any c	lear indication	٦.	
	(d)		26				B1	1	fx = 63 + Allow 1 om	84 + 69 + 130 ission or 2 inc	0 + 45 + 105 corr mid pts	= 496
	(e)	(i)	0				B1		not <u>0</u>			
		(ii)	<u>6</u> 40				B1		isw			
	(f)		(2x) <u>6</u> x <u>3</u>	<u>34</u>	M1 = <u>17</u>	7	A1	4				
			40 .	52	03	,		12				
									•			

© University of Cambridge International Examinations 2004

		Page	5		Syllabus	Paper			
				MATHEN	ATICS (Syllal	bus D) – JUNE 200	4	4024	2
11	(a)	(i) Num	ther of even (44)	vents		B1			
		(II) (a)	(46)			B1 + B1		sc1 for (44, 46)
		(b)	School s	cores, totals,	no of points o	.e. B1 indep of (a)			
		(iii) (55 55)	\rightarrow Yes	(tie)		B1	5		
	(b)	(i) \overline{PX}	$=-\frac{1}{3}p$	$+rac{1}{3}q$ o.e		B1		Accept unsimp	lified answers
		(ii) \overline{OX}	$= \frac{2}{3}p + \frac{2}{3}$	$rac{1}{3}q$ o.e		B1		Accept unsimp	lified answers
		(iii) \overline{QY}	= p + (k	-1)q o.e		B1	3	Accept unsimp	lified answers
		(iv) $\lambda \overline{O}$	$\overline{X} = \overline{QY}$		M1 $k = \frac{3}{2}$	A1	2		
		(v) \overline{PZ}	$=\frac{1}{2}q$			B2	2 12	Accept unsimp	lified answers

MATHEMATICS	(SYLLABUS D)	4024/02
Paper 2		May/June 2003
		2 hours 30 minutes
Additional Materials:	Answer Booklet/Paper Electronic calculator Geometrical instruments Graph paper (1 sheet) Mathematical tables (optional)	

READ THESE INSTRUCTIONS FIRST

Write your answers and working on the separate Answer Booklet/Paper provided. Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A Answer all questions.

Section B

Answer any four questions.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

Show all your working on the same page as the rest of the answer.

Omission of essential working will result in loss of marks.

The total of the marks for this paper is 100.

You are expected to use an electronic calculator to evaluate explicit numerical expressions. You may use mathematical tables as well if necessary.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

This document consists of **11** printed pages and **1** blank page.

UNIVERSITY of CAMBRIDGE

http://www.xtremepapers.net

Section A [52 marks]

Answer all questions in this section.

1 (a) (i) Evaluate
$$\frac{4.8^2 - 1.7^2}{4.8 \times 1.7}$$
. [1]

(ii) Find a value of x for which $\sin x^{\circ} = \tan 12^{\circ} + \cos 46^{\circ}$.

(b) The diagram shows a framework *ABCD*.

(c) A vertical flagpole, 18 m high, stands on horizontal ground.

Calculate the angle of elevation of the top of the flagpole from a point, on the ground, 25 m from its base. [2]

- 2 (a) Factorise completely $20t^2 5$. [2]
 - (b) Express as a single fraction in its simplest form

$$\frac{7}{2x} - \frac{5}{3x}.$$
 [2]

[1]

(c) Tickets for a concert were priced at \$5, \$8 and \$12.

The number of \$5 tickets sold was twice the number of \$8 tickets. The number of \$12 tickets sold was 80 more than the number of \$8 tickets.

The number of \$8 tickets sold was *x*.

- (i) Find an expression, in terms of *x*, for the total sum of money received from the sale of the tickets. [1]
- (ii) Given that \$9360 was received from the sale of the tickets, form an equation in *x*.Solve this equation and hence find the **total** number of tickets that were sold. [3]

- **3** In 2001 the price of one litre of petrol was 72 cents.
 - (a) 65% of this price is 'tax' and the remainder is 'other costs'.

	(i)	Find, in its simplest form, the ratio of tax to other costs.	
		Give your answer in the form $m : n$, where m and n are integers.	[1]
	(ii)	Calculate how much tax is paid on one litre of petrol.	[1]
(b)	Mau	reen bought as many complete litres of petrol as she could with a 20 note ($1 = 100$ cent	ts).
	(i)	Calculate how many litres she bought.	[1]
	(ii)	Calculate how much change she received.	[1]
(c)	In 20	002 the price of one litre of petrol was 81 cents.	
	Calc	sulate the percentage increase in the price of petrol from 2001 to 2002.	[2]
(d)	The	price of petrol in 2001 was 10% less than the price in 2000.	
	Calc	sulate the price of one litre of petrol in 2000.	[3]
(e)	And He s He v	rew's car will travel 480 km on a full tank of petrol. starts a journey of 620 km with a tank which is half full. wants to stop only once for petrol.	
	Betw	veen what distances from the start of his journey must he stop for petrol?	[2]

4

BD is a diameter of the circle, centre *O*. *C* and *A* are two points on the circle. *AB* and *DC*, when produced, meet at *E*. $A\hat{O}B = 110^{\circ}$ and $B\hat{D}C = 23^{\circ}$.

(a) Find

	(i)	ADO,		[1]
	(ii)	BÂC,		[1]
	(iii)	CÊD,		[1]
	(iv)	CÊB.		[1]
(b)	M is	the midpoint of CD.		
	(i)	Explain why triangle OM	D is similar to triangle BCD.	[2]
	(ii)	Write down the value of	$\frac{\text{Area of } \triangle OMD}{\text{Area of } \triangle BCD}.$	[1]

5 (a) One hundred and sixty students took an examination. The table shows the marks needed for each grade. The cumulative frequency curve shows the distribution of their marks.

(i) Use the graph to estimate

awarded a Grade C.

	(a)	the median,	[1]			
	(b)	the interquartile range,	[2]			
	(c)	the number of students who were awarded a Grade C.	[2]			
(ii)) A pie chart was drawn to illustrate the grades awarded to the students.					
	Cal	culate the angle of the sector which represented the number of students who	were			

(b) An ordinary unbiased die has faces numbered 1, 2, 3, 4, 5 and 6.Sarah and Terry each threw this die once.Expressing each answer as a fraction in its lowest terms, find the probability that

(i)	Sarah threw a 7,	[1]
(ii)	they both threw a 6,	[1]
(iii)	neither threw an even number,	[1]
(iv)	Sarah threw exactly four more than Terry.	[1]

[2]

The natural numbers 1, 2, 3, ... are written, in a clockwise direction, on a circular grid as shown in the diagram.

There are four numbers in each ring.

6

The numbers 1, 2, 3, and 4 are in the first ring. The numbers 5, 6, 7 and 8 are in the second ring.

The following numbers fill up the other rings in the same way.

- (a) Write down the numbers in the fourth ring. [1]
- (b) Write down the largest number in the tenth ring. [1]
- (c) The sum, S_n , of the four numbers in the *n*th ring, where n = 1, 2 and 3, is given in the table below.

n	1	2	3	4
S _n	10	26	42	

(i)	Write down the value of S_4 .	[1]
(ii)	Find, in its simplest form, an expression, in terms of r , for S_r .	[2]
(iii)) In which ring is the sum of the four numbers equal to 1018?	[1]

Section B [48 marks]

Answer **four** questions in this section.

Each question in this section carries 12 marks.

7 [The value of π is 3.142, correct to three decimal places.] [The surface area of a sphere is $4\pi r^2$.] [The volume of a sphere is $\frac{4}{3}\pi r^3$.]

A closed container is made by joining together a cylinder of radius 9 cm and a hemisphere of radius 9 cm as shown in Diagram I. The length of the cylinder is 18 cm. The container rests on a horizontal surface and is exactly half full of water.

- (a) Calculate the surface area of the inside of the container that is in contact with the water. Give your answer correct to the nearest square centimetre. [4]
- (b) Show that the volume of the water is 972π cm³.
- (c) The container is held with its axis vertical, the hemisphere being at the bottom, as shown in Diagram II.
 Calculate the depth of the water.

[2]

8 Answer the whole of this question on a sheet of graph paper.

Temperatures were recorded over a nine hour period. The table below shows the temperature, $y \circ C$, at various times.

Time (<i>x</i> hours)	0	1	2	3	4	5	6	7	8	9
Temperature ($y \circ C$)	2	-1	-2	-1.4	0	2	3.5	3.4	2.4	0.6

⁽a) Using a scale of 1 cm to represent 1 hour, draw a horizontal *x*-axis for 0 ≤ x ≤ 9. Using a scale of 2 cm to represent 1 °C, draw a vertical *y*-axis for -2 ≤ y ≤ 4. On your axes, plot the points given in the table and join them with a smooth curve. [3]
(b) Use your graph to find an estimate for

(i) the temperature when x = 5.5,
(ii) the difference between the highest and lowest temperatures

	(ii)	the difference between the highest and lowest temperatures,	[1]
	(iii)	how long, in hours and minutes, the temperature was above 2 °C.	[2]
(c)	(i)	By drawing a tangent, find the gradient of the curve at the point where $x = 8$.	[2]
	(ii)	State briefly what this gradient represents.	[1]
(d)	The	curve from $x = 0$ to $x = 2$ has the equation $y = x^2 + Bx + C$.	
	Find	the value of C and the value of B.	[2]

The diagram shows the position of a harbour, *H*, and three islands *A*, *B* and *C*. *C* is due North of *H*. The bearing of *A* from *H* is 062° and $H\hat{A}B = 128^{\circ}$.

HA = 54 km and AB = 31 km.

9

(a)	Calculate the distance <i>HB</i> .	[4]
(b)	Find the bearing of <i>B</i> from <i>A</i> .	[1]
(c)	The bearing of A from C is 133° .	
	Calculate the distance AC.	[4]

(d) A lightship, *L*, is positioned due North of *H* and equidistant from *A* and *H*.Calculate the distance *HL*. [3]

10

Diagram I shows a quadrilateral, *ABCD*, in which DA = AB = x centimetres and BC = CD = y centimetres.

 $A\hat{B}C = C\hat{D}A = 90^{\circ}.$

- (a) Show that the area of this quadrilateral is *xy* square centimetres. [1]
- (b) Five of these quadrilaterals are joined together to make the shape shown in Diagram II. The total area of this shape is 80 cm².
 - (i) Show that the outside perimeter, *P* centimetres, of this shape is given by

$$P = 10x + \frac{32}{x}.$$
 [2]

(ii)	(a)	In the case when $P = 38$, show that $5x^2 - 19x + 16 = 0$.	[2]
	(b)	Solve the equation $5x^2 - 19x + 16 = 0$, giving both answers correct to two de places.	cimal [4]
	(c)	Find the two possible values of y when $P = 38$.	[1]
(iii)	(a)	Calculate the value of <i>P</i> when $x = y$.	[1]
	(b)	What is the special name given to the quadrilateral <i>ABCD</i> when $x = y$?	[1]

The diagram shows triangles A, B, C and D.

11

(a)	Describe fully the single transformation which maps A onto B.	[2]
(b)	Find the matrix that represents the single transformation which maps A onto C .	[2]
(c)	A is mapped onto D by a clockwise rotation.	
	Find	
	(i) the angle of this rotation,	[1]
	(ii) the coordinates of the centre of this rotation.	[1]
(d)	The matrix $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ represents the transformation which maps triangle A onto triangle E.	
	(i) Find the coordinates of the vertices of triangle E .	[2]
	(ii) Describe fully the transformation that is represented by the matrix $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$.	[2]
	(iii) Find the matrix that represents the single transformation which maps triangle E onto triangle A .	[2]

BLANK PAGE

MATHEMATICS	(SYLLABUS D)	4024/02
Paper 2		May/June 2003
		2 hours 20 minutes
Additional Materials:	Answer Booklet/Paper Electronic calculator Geometrical instruments Graph paper (1 sheet) Mathematical tables (optional)	2 nours 30 minutes

READ THESE INSTRUCTIONS FIRST

Write your answers and working on the separate Answer Booklet/Paper provided. Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A Answer all questions.

Section B

Answer any four questions.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

Show all your working on the same page as the rest of the answer.

Omission of essential working will result in loss of marks.

The total of the marks for this paper is 100.

You are expected to use an electronic calculator to evaluate explicit numerical expressions. You may use mathematical tables as well if necessary.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

This document consists of **11** printed pages and **1** blank page.

MCS-UCH169/DG-S41780/3 © CIE 2003 UNIVERSITY of CAMBRIDGE Local Examinations Syndicate

Section A [52 marks]

Answer all questions in this section.

1 (a) (i) Evaluate
$$\frac{4.8^2 - 1.7^2}{4.8 \times 1.7}$$
. [1]

(ii) Find a value of x for which $\sin x^{\circ} = \tan 12^{\circ} + \cos 46^{\circ}$.

(b) The diagram shows a framework *ABCD*.

(c) A vertical flagpole, 18 m high, stands on horizontal ground.

Calculate the angle of elevation of the top of the flagpole from a point, on the ground, 25 m from its base. [2]

- 2 (a) Factorise completely $20t^2 5$. [2]
 - (b) Express as a single fraction in its simplest form

$$\frac{7}{2x} - \frac{5}{3x}.$$
 [2]

[1]

(c) Tickets for a concert were priced at \$5, \$8 and \$12.

The number of \$5 tickets sold was twice the number of \$8 tickets. The number of \$12 tickets sold was 80 more than the number of \$8 tickets.

The number of \$8 tickets sold was *x*.

- (i) Find an expression, in terms of *x*, for the total sum of money received from the sale of the tickets. [1]
- (ii) Given that \$9360 was received from the sale of the tickets, form an equation in *x*.Solve this equation and hence find the **total** number of tickets that were sold. [3]

4024/2/M/J/03

- **3** In 2001 the price of one litre of petrol was 72 cents.
 - (a) 65% of this price is 'tax' and the remainder is 'other costs'.

	(i)	Find, in its simplest form, the ratio of tax to other costs. Give your answer in the form $m : n$, where m and n are integers.	[1]
	(ii)	Calculate how much tax is paid on one litre of petrol.	[1]
(b)	Maı	areen bought as many complete litres of petrol as she could with a \$20 note ($$1 = 100$ cen	ts).
	(i)	Calculate how many litres she bought.	[1]
	(ii)	Calculate how much change she received.	[1]
(c)	In 2	002 the price of one litre of petrol was 81 cents.	
	Calo	culate the percentage increase in the price of petrol from 2001 to 2002.	[2]
(d)	The	price of petrol in 2001 was 10% less than the price in 2000.	
	Calo	culate the price of one litre of petrol in 2000.	[3]
(e)	And He s He y	lrew's car will travel 480 km on a full tank of petrol. starts a journey of 620 km with a tank which is half full. wants to stop only once for petrol.	
	Bety	ween what distances from the start of his journey must he stop for petrol?	[2]

4024/2/M/J/03

www.xtremepapers.net

4

D

BD is a diameter of the circle, centre *O*. *C* and *A* are two points on the circle. *AB* and *DC*, when produced, meet at *E*. $A\hat{O}B = 110^{\circ}$ and $B\hat{D}C = 23^{\circ}$.

(a) Find

4

	(i)	ADO,		[1]
	(ii)	BÂC,		[1]
	(iii)	CÊD,		[1]
	(iv)	CÊB.		[1]
(b)	M is	the midpoint of CD.		
	(i)	Explain why triangle OM	D is similar to triangle BCD.	[2]
	(ii)	Write down the value of	$\frac{\text{Area of } \triangle OMD}{\text{Area of } \triangle BCD}.$	[1]

4024/2/M/J/03

www.xtremepapers.net

5 (a) One hundred and sixty students took an examination. The table shows the marks needed for each grade. The cumulative frequency curve shows the distribution of their marks.

(i) Use the graph to estimate

(a)	the median,	[1]
(b)	the interquartile range,	[2]
(c)	the number of students who were awarded a Grade C.	[2]

(ii) A pie chart was drawn to illustrate the grades awarded to the students.

Calculate the angle of the sector which represented the number of students who were awarded a Grade C. [2]

- (b) An ordinary unbiased die has faces numbered 1, 2, 3, 4, 5 and 6. Sarah and Terry each threw this die once. Expressing each answer as a fraction in its lowest terms, find the probability that
 (i) Sarah threw a 7,
 - (i) Sarah threw a 7,[1](ii) they both threw a 6,[1](iii) neither threw an even number,[1](iv) Sarah threw exactly four more than Terry.[1]

4024/2/M/J/03

[Turn over

www.xtremepapers.net

The natural numbers 1, 2, 3, ... are written, in a clockwise direction, on a circular grid as shown in the diagram.

There are four numbers in each ring.

The numbers 1, 2, 3, and 4 are in the first ring. The numbers 5, 6, 7 and 8 are in the second ring.

The following numbers fill up the other rings in the same way.

- (a) Write down the numbers in the fourth ring. [1]
- (b) Write down the largest number in the tenth ring. [1]
- (c) The sum, S_n , of the four numbers in the *n*th ring, where n = 1, 2 and 3, is given in the table below.

n	1	2	3	4
S _n	10	26	42	

(i)	Write down the value of S_4 .	[1]
(ii)	Find, in its simplest form, an expression, in terms of r , for S_r .	[2]
(iii)) In which ring is the sum of the four numbers equal to 1018?	[1]

4024/2/M/J/03

w<u>ww.xtremepapers.net</u>

[Turn over

[2]

Section B [48 marks]

Answer **four** questions in this section.

Each question in this section carries 12 marks.

7 [The value of π is 3.142, correct to three decimal places.] [The surface area of a sphere is $4\pi r^2$.] [The volume of a sphere is $\frac{4}{3}\pi r^3$.]

A closed container is made by joining together a cylinder of radius 9 cm and a hemisphere of radius 9 cm as shown in Diagram I. The length of the cylinder is 18 cm. The container rests on a horizontal surface and is exactly half full of water.

- (a) Calculate the surface area of the inside of the container that is in contact with the water. Give your answer correct to the nearest square centimetre. [4]
- (b) Show that the volume of the water is 972π cm³.
- (c) The container is held with its axis vertical, the hemisphere being at the bottom, as shown in Diagram II.
 Calculate the depth of the water.

8 Answer the whole of this question on a sheet of graph paper.

Temperatures were recorded over a nine hour period. The table below shows the temperature, y °C, at various times.

Time (<i>x</i> hours)	0	1	2	3	4	5	6	7	8	9
Temperature (y °C)	2	-1	-2	-1.4	0	2	3.5	3.4	2.4	0.6

(a) Using a scale of 1 cm to represent 1 hour, draw a horizontal *x*-axis for 0 ≤ x ≤ 9. Using a scale of 2 cm to represent 1 °C, draw a vertical *y*-axis for -2 ≤ *y* ≤ 4. On your axes, plot the points given in the table and join them with a smooth curve. [3]
(b) Use your graph to find an estimate for

(i) the temperature when x = 5.5,
(ii) the difference between the highest and lowest temperatures,

	(iii)	how long, in hours and minutes, the temperature was above 2 °C.	[2]
(c)	(i)	By drawing a tangent, find the gradient of the curve at the point where $x = 8$.	[2]
	(ii)	State briefly what this gradient represents.	[1]
(d)	The	curve from $x = 0$ to $x = 2$ has the equation $y = x^2 + Bx + C$.	
	Find	the value of C and the value of B.	[2]

4024/2/M/J/03

www.xtremepapers.net

9

The diagram shows the position of a harbour, *H*, and three islands *A*, *B* and *C*. *C* is due North of *H*. The bearing of *A* from *H* is 062° and $H\hat{A}B = 128^{\circ}$.

HA = 54 km and AB = 31 km.

(a)	Calculate the distance <i>HB</i> .	[4]
(b)	Find the bearing of <i>B</i> from <i>A</i> .	[1]
(c)	The bearing of A from C is 133° .	
	Calculate the distance AC.	[4]

(d) A lightship, *L*, is positioned due North of *H* and equidistant from *A* and *H*.Calculate the distance *HL*.

4024/2/M/J/03

www.xtremepapers.net

10

Diagram I shows a quadrilateral, *ABCD*, in which DA = AB = x centimetres and BC = CD = y centimetres.

 $A\hat{B}C = C\hat{D}A = 90^{\circ}.$

- (a) Show that the area of this quadrilateral is *xy* square centimetres. [1]
- (b) Five of these quadrilaterals are joined together to make the shape shown in Diagram II. The total area of this shape is 80 cm².
 - (i) Show that the outside perimeter, P centimetres, of this shape is given by

$$P = 10x + \frac{32}{x}.$$
 [2]

(ii)	(a)	In the case when $P = 38$, show that $5x^2 - 19x + 16 = 0$.	[2]
	(b)	Solve the equation $5x^2 - 19x + 16 = 0$, giving both answers correct to two deplaces.	ecimal [4]
	(c)	Find the two possible values of y when $P = 38$.	[1]
(iii)	(a)	Calculate the value of <i>P</i> when $x = y$.	[1]
	(b)	What is the special name given to the quadrilateral <i>ABCD</i> when $x = y$?	[1]

4024/2/M/J/03

The diagram shows triangles A, B, C and D.

(a)	Describe fully the single transformation which maps A onto B.					
(b)	Find the matrix that represents the single transformation which maps A onto C .					
(c)	A is mapped onto D by a clockwise rotation.					
	Find					
	(i) the angle of this rotation,	[1]				
	(ii) the coordinates of the centre of this rotation.	[1]				
(d)	The matrix $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$ represents the transformation which maps triangle A onto triangle E.					
	(i) Find the coordinates of the vertices of triangle E .	[2]				
	(ii) Describe fully the transformation that is represented by the matrix $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$.	[2]				
	(iii) Find the matrix that represents the single transformation which maps triangle E onto triangle A .	[2]				

4024/2/M/J/03

BLANK PAGE

4024/2/M/J/03

www.xtremepapers.net

Centre Number	Candidate Number	Name							
CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level									
MATHEMATIC	S (SYLLABUS D)	,,,,,,	4024/01						
	- (- · · · ,								
Paper 1			May/June 2003						
			2 hours						
Candidates answe Additional Materia	er on the Question Pap Ils: Geometrical instrum	er. nents							
READ THESE INSTRUCT	FIONS FIRST								
Write your Centre number Write in dark blue or black	; candidate number and pen in the spaces prov	d name on all the work you har vided on the Question Paper.	id in.						
You may use a pencil for a Do not use staples, paper	any diagrams or graphs clips, highlighters, glue	s. e or correction fluid.							
Answer all questions.		a and of each suppliers or part							
If working is peeded for or		been of each question of part							
Omission of essential wor The total of the marks for	If working is needed for any question it must be shown in the space below that question. Omission of essential working will result in loss of marks. The total of the marks for this paper is 80.								
	CALCULATORS NO	R MATHEMATICAL TABLES	MAY BE USED IN THIS						
FALL.									
			For Examiner's Use						
If you have been given a la	abel, look at the								
details. If any details are ir missing, please fill in your	ncorrect or correct details								
in the space given at the te	op of this page.								
Stick your personal label h	nere, if								
	This document co	onsists of 16 printed pages.							
MCS UCH168/DG S41781/2 © CIE 2003 UNIVERSITY of CAMBRIDGE Local Examinations Syndicate [Turn over]									
ŕ	ntp://www.2	xiremepapers.	net						

2				
	NEIT	HER ELECTRONIC CALCULATORS NOR MATHEMATICAL TABLES MAY BE USED IN THIS PAPER.		
1	(a)	Express 0.03 as a fraction.		
	(b)	Express \$150 as a percentage of \$500.		
		Answer (a)[1]		
		(<i>b</i>)% [1]		
2	(a)	Evaluate $\frac{7}{8} - \frac{7}{10}$, giving your answer as a fraction in its lowest terms.		
	(b)	Evaluate $2\frac{1}{3} \times 3\frac{1}{2}$, giving your answer as a mixed number.		
		Answer (a) [1]		
		<i>(b)</i>		
3	Eva	aluate		
	(a)	$24 \div 6 + 2 \times 9 ,$		
	(b)	0.4 imes 0.02 .		
		Arguer (c) [1]		
		Answer (<i>u</i>)[1]		

For Examiner's	4						
use	6	(a)	a) Express 99 as the product of its prime factors.				
		(b)	Find the smallest possible integer value of n for which 99 n is a multiple of 24.				
			$Answer(a) \qquad [1]$				
			(b) [1]				
			(0)[1]				
	7	(a)	It is given that $5^{-2} \times 5^k = 1$. Write down the value of <i>k</i> .				
		(b)	It is given that $\sqrt[3]{7} = 7^m$. Write down the value of <i>m</i> .				
			Answer (a) $k =$				
			(b) $m = \dots [1]$				
	 8 (a) Add together 37 kilograms and 40 grams. Give your answer in kilograms. 						
		(b)	The length of a piece of string is 0.026 metres, correct to the nearest millimetre. Write down, in millimetres, the lower bound of this length.				
			Answer (a) ko [1]				
			(<i>b</i>)				

9 $p = 3.2 \times 10^{11}$ and $q = 8 \times 10^{-4}$. Expressing your answers in standard form, evaluate

(a) q^2 ,

For Examiner's

use

(**b**) $p \div q$.

Answer (*a*)......[1]

(b).....[1]

10
$$\mathbf{a} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$, $\mathbf{c} = \begin{pmatrix} u \\ 10 \end{pmatrix}$.

- (a) Express 2a + b as a column vector.
- (b) Given that the vector \mathbf{c} is parallel to the vector \mathbf{a} , calculate the value of u.

Answer (a)
$$\begin{pmatrix} & \\ & \end{pmatrix}$$
 [1]

(b)
$$u = \dots [1]$$

11 Solve the simultaneous equations

$$4x - y = 9,$$

$$2x - 3y = -23.$$

Answer $x = \dots$

y =.....[3]

15 The lines x + y = 2 and x - 3y = 6 are shown on the diagram in the answer space.

(a) Find the gradient of the line x - 3y = 6.

Answer (a)[1]

(b) On the diagram in the answer space, shade the region defined by the inequalities $x + y \le 2$, $x - 3y \le 6$ and $x + 1 \ge 0$.

9 16 (a) State the order of rotational symmetry of a regular decagon. Answer (a)[1] (b) Write down those letters of the word AMBULANCE which have a vertical axis of symmetry. Answer (b)......[1] (c) A and B are two points in space which are 10 cm apart. Describe fully the locus of points in three dimensions that are 3 cm from the line which starts at A and ends at B. Answer (c).....[2] **17** A function is defined by f(x) = 3x + 4. (a) Given that f(k) = k, find k. (b) Find the inverse of f. (b) $f^{-1}(x) = \dots [2]$

For Examiner's

use

For Examiner's

use
For niner's		11	
19	The v radius	vertices of the square <i>ABCD</i> lie on a circle of s <i>r</i> cm.	A l B
	(a) S	Show that the length, $l \text{ cm}$, of a side of the equare is $r\sqrt{2}$ cm.	
	(b) H t s	By comparing the perimeter of the square and he circumference of the circle, or otherwise, show that $\sqrt{2} < \frac{\pi}{2}$.	
	(c) V	What special kind of numbers are $\sqrt{2}$ and π ?	
	Answ	er (a)	
			[1]
		(<i>b</i>)	
		 (c)	[2]
20	(a) H	Expand and simplify $(x-1)(x^2 + x + 1)$.	
	(b) I	Factorise $ax - bx - 3ay + 3by$.	
		Answer (a)	[2]
		(<i>b</i>)	[2]
		4024/01/ M /J 2003	[Turn over

For Examiner's use

21

Two vertical posts of the same height stand on horizontal ground. The distance between the posts is d centimetres.

When a wire of length *w* centimetres is suspended between the posts, the sag in the middle is *s* centimetres.

The sag is given by the formula $s = \sqrt{\frac{3d(w-d)}{8}}$.

- (a) Find *s* when d = 800 and w = 803.
- (b) Express w in terms of d and s.

(b) $w = \dots [3]$

- 22 It is given that $\sin 30^\circ = 0.5$ and $\cos 30^\circ = 0.866$.
 - (a) Write down the value of
 - (i) cos 150°,
 - (**ii**) cos 60°.
 - (b) A triangle has sides of length 6 cm and 5 cm. The angle between these two sides is 150°. Calculate the area of the triangle.

Answer (a)(i) $\cos 150^\circ = \dots [1]$

- (ii) $\cos 60^\circ = \dots$ [1]
- (b) cm^2 [2]

For Examiner's use

For Examiner's

use

The speed-time graph shows the performance of a cyclist during the first 90 seconds of a race.

- (a) Calculate the acceleration of the cyclist during the first 10 seconds.
- (b) Calculate the distance, in metres, travelled by the cyclist in the first 90 seconds.
- (c) Calculate the time taken for the cyclist to travel 1 kilometre.

- *Answer* (*a*)......m/s² [1]
 - (*b*)..... m [3]
 - (*c*).....s [2]

For Examiner's

use

16

25 The numbers of goals scored in 20 football matches were

5	0	5	4	1	0	5	5	1
4	5	0	0	5	5	3	2	5

- (a) (i) Complete the table in the answer space.
 - (ii) Using the axes in the answer space, represent the information as a bar chart.

3 4

(b) State the median.

For Examiner's

use

(c) Calculate the mean number of goals.

Answer (a)(i)

Number of goals	Frequency
0	
1	
2	
3	
4	
5	

[1]

Centre Number	Candidate Number	Name
C4		
07	General Certificate	of Education Ordinary Level
MATHEMATIC	S (SYLLABUS D)	4024/01
Paper 1		May/June 2003
		2 hours
Candidates answe Additional Materia	er on the Question Pap ls: Geometrical instrum	per. nents
READ THESE INSTRUCT	IONS FIRST	
Write your Centre number Write in dark blue or black You may use a pencil for a Do not use staples, paper	, candidate number an pen in the spaces pro- any diagrams or graphs clips, highlighters, glue	nd name on all the work you hand in. wided on the Question Paper. s. e or correction fluid.
Answer all questions. The number of marks is gi	ven in brackets [] at th	he end of each question or part question.
If working is needed for an Omission of essential work The total of the marks for t	y question it must be s king will result in loss o his paper is 80.	shown in the space below that question. of marks.
NEITHER ELECTRONIC	CALCULATORS NO	R MATHEMATICAL TABLES MAY BE USED IN THIS
		For Examiner's Use
If you have been given a la details. If any details are in missing, please fill in your in the space given at the to	abel, look at the acorrect or correct details op of this page.	
Stick your personal label h provided.	ere, if	
	This document co	onsists of 16 printed pages.

MCS UCH168/DG S41781/2 © CIE 2003 UNIVERSITY of CAMBRIDGE Local Examinations Syndicate

.net

www.xtremepapers.

[Turn over

	2				
ľ	NEITHER ELECTRONIC CALCULATORS NOR MATHEMATICAL TABLES MAY BE USED IN THIS PAPER.				
1	(a) Express 0.03 as a fraction.				
	(b) Express \$150 as a percentage of \$500.				
	Answer (a) [1]				
	(b)% [1]				
2	(a) Evaluate $\frac{7}{8} - \frac{7}{10}$, giving your answer as a fraction in its lowest terms.				
	(b) Evaluate $2\frac{1}{3} \times 3\frac{1}{2}$, giving your answer as a mixed number.				
	Answer (a)[1]				
	<i>(b)</i>				
3	Evaluate				
	(a) $24 \div 6 + 2 \times 9$,				
	(b) 0.4×0.02 .				
	Answer (a)[1]				
	<i>(b)</i> [1]				

For Examiner's			4	For Examiner
use	6	(a)	Express 99 as the product of its prime factors.	use
		(b)	Find the smallest possible integer value of n for which $99n$ is a multiple of 24.	
			Answer (a)[1]	
			(<i>b</i>)[1]	
	7	(a)	It is given that $5^{-2} \times 5^k = 1$. Write down the value of k.	
		(b)	It is given that $\sqrt[3]{7} = 7^m$. Write down the value of <i>m</i> .	
			Answer (a) $k =$	
			(b) $m = \dots [1]$	
	8	(a)	Add together 37 kilograms and 40 grams. Give your answer in kilograms.	
		(b)	The length of a piece of string is 0.026 metres, correct to the nearest millimetre. Write down, in millimetres, the lower bound of this length.	
			Answer (a) kg [1]	
			(<i>b</i>) mm [1]	
			4024/01/M/J 2003	

9 $p = 3.2 \times 10^{11}$ and $q = 8 \times 10^{-4}$. Expressing your answers in standard form, evaluate (a) q^2 ,

(b) $p \div q$.

For Examiner's

use

Answer (a)......[1]

(b).....[1]

10
$$\mathbf{a} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$, $\mathbf{c} = \begin{pmatrix} u \\ 10 \end{pmatrix}$.

- (a) Express 2a + b as a column vector.
- (b) Given that the vector **c** is parallel to the vector **a**, calculate the value of *u*.

5

Answer (a)
$$\left(\begin{array}{c} \\ \end{array}\right)$$
 [1]

(b)
$$u = \dots [1]$$

11 Solve the simultaneous equations

$$4x - y = 9,$$

$$2x - 3y = -23.$$

Answer	<i>x</i> =
	y =[3]

4024/01/M/J 2003

www.xtremepapers.net

[Turn over

15 The lines x + y = 2 and x - 3y = 6 are shown on the diagram in the answer space.

(a) Find the gradient of the line x - 3y = 6.

Answer (a)[1]

(b) On the diagram in the answer space, shade the region defined by the inequalities $x + y \le 2$, $x - 3y \le 6$ and $x + 1 \ge 0$.

4024/01/M/J 2003

er's		9	For Examiner
16	(a)	State the order of rotational symmetry of a regular decagon.	use
		Answer (a) [1]	
	(b)	Write down those letters of the word AMBULANCE which have a vertical axis of symmetry.	
	(c)	Answer (b)[1] A and B are two points in space which are 10 cm apart.	
		Describe fully the locus of points in three dimensions that are 3 cm from the line which starts at A and ends at B .	
		Answer (c)	
		[2]	
17	A f	unction is defined by $f(x) = 3x + 4$.	
	(a)	Given that $f(k) = k$, find k.	
	(b)	Find the inverse of f.	
		Answer (a) $k =$	
		(b) $f^{-1}(x) = \dots [2]$	
		4024/01/M/J 2003 [Turn over	
		MMM vtramananars nat	

For

use

er's	11
19	The vertices of the square ABCD lie on a circle of $A \swarrow B$
	(a) Show that the length, $l \text{ cm}$, of a side of the square is $r \sqrt{2}$ cm.
	(b) By comparing the perimeter of the square and the circumference of the circle, or otherwise, D
	show that $\sqrt{2} < \frac{\pi}{2}$.
	(c) What special kind of numbers are $\sqrt{2}$ and π ?
	Answer (a)
	Answer (a)
	[1]
	(<i>b</i>)
	(<i>c</i>)[1]
20	(a) Expand and simplify $(x-1)(x^2 + x + 1)$.
	(b) Factorise $ax - bx - 3ay + 3by$.
	Answer (a)[2]
	(<i>b</i>)[2]
	4024/01/M/J 2003 [Turn over
	www.xtremenapers.net

For Examiner's use 21

Two vertical posts of the same height stand on horizontal ground. The distance between the posts is d centimetres.

When a wire of length *w* centimetres is suspended between the posts, the sag in the middle is *s* centimetres.

The sag is given by the formula $s = \sqrt{\frac{3d(w-d)}{8}}$.

- (a) Find *s* when d = 800 and w = 803.
- (b) Express w in terms of d and s.

Answer (*a*) $s = \dots [1]$

(b) $w = \dots [3]$

4024/01/M/J 2003

- (a) Write down the value of
 - (i) cos 150°,
 - (**ii**) cos 60°.
- (b) A triangle has sides of length 6 cm and 5 cm. The angle between these two sides is 150°. Calculate the area of the triangle.

Answer (a)(i) $\cos 150^\circ = \dots$ [1]

- (ii) $\cos 60^\circ = \dots$ [1]
- (b) cm^2 [2]

[Turn over

4024/01/M/J 2003

For Examiner's use

4024/01/M/J 2003

For Examiner's

use

The speed-time graph shows the performance of a cyclist during the first 90 seconds of a race.

- (a) Calculate the acceleration of the cyclist during the first 10 seconds.
- (b) Calculate the distance, in metres, travelled by the cyclist in the first 90 seconds.
- (c) Calculate the time taken for the cyclist to travel 1 kilometre.

- *Answer* (*a*)..... m/s^2 [1]
 - (b)..... m [3]
 - (*c*).....s [2]

4024/01/M/J 2003

[Turn over

16

25 The numbers of goals scored in 20 football matches were

5	0	5	4	1	0	5	5	1
4	5	0	0	5	5	3	2	5

- (a) (i) Complete the table in the answer space.
 - (ii) Using the axes in the answer space, represent the information as a bar chart.

3 4

- (b) State the median.
- (c) Calculate the mean number of goals.

Answer (a)(i)

Number of goals	Frequency
0	
1	
2	
3	
4	
5	

[1]

www.xtremepapers.net

For Examiner's use CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

MATHEMATICS (SYLLABUS D) PAPER 2 4024/2 Rupee version

MAY/JUNE SESSION 2002 2 hours 30 minutes

Additional materials: Answer paper Electronic calculator Geometrical instruments Graph paper (2 sheets) Mathematical tables (optional)

TIME 2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces provided on the answer paper/answer booklet.

Write your answers and working on the separate answer paper provided.

Show all your working on the same page as the rest of the answer.

Omission of essential working will result in loss of marks.

Section A

Answer **all** questions.

Section B

Answer any **four** questions.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 100.

You are expected to use an electronic calculator to evaluate explicit numerical expressions. You may use mathematical tables as well if necessary.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

This question paper consists of 9 printed pages and 3 blank pages.

University of Cambridge http://www.xtreingine Syndictors.net

2

Section A [52 marks]

Answer **all** questions in this section.

1 Denise, Elaine and Michelle went on holiday to America.

2

(a)	The exchange rate between American dollars (\$) and British pounds (£) was $1.60 = £1$. Denise changed £400 into dollars. Calculate how many dollars she received.	[1]
(b)	To change the money, the bank charged a fixed amount of $\pounds 3$ plus 2% of the number of pochanged.	unds
	(i) Calculate the amount the bank charged Denise to change her £400.	[1]
	(ii) The bank then charged Elaine £15 to change her money. Calculate the number of pounds she changed.	[2]
(c)	While in America they spent a total of \$450 on food. The amounts spent by Denise, Elaine and Michelle were in the ratio 7 : 6 : 5. Calculate how much Denise spent on food.	[2]
(d)	Michelle bought a watch for \$135. This price included a tax of 8%. Calculate the tax that was paid.	[3]
(a)	Remove the brackets and simplify $(q+3r)(2q-r)$.	[2]
(b)	Given that $m = -2$ and $n = 4$, evaluate	
	(i) $5m^3$,	[1]
	(ii) $\frac{m}{n} + \frac{n}{m}$.	[1]
(c)	Factorise completely $3y^2-3$.	[2]
(d)	Peter has Rs200 and Paul has Rs2120. When they are each given Rs x , Paul has 5 times as much as Peter. Write down an equation in x and solve it.	[3]

- 3 The diagram shows a vertical mast, *TB*, of height 18 m. *A*, *B* and *C* are three points on horizontal ground. *TA* and *TC* are two straight wires. *TC* has length 27 m and $A\hat{T}B = 31^{\circ}$.
 - (a) Calculate (i) $B\hat{C}T$, (ii) the length of *TA*. (b) A third straight wire, *TD*, joins *T* to a point *D* on the same horizontal ground. Given that $D\hat{T}B = 51^{\circ}$, find the angle of elevation of *T* from *D*. [1]
- 4 (a) Show that the interior angle of a regular hexagon is 120° .
 - (b) In the diagram, *ABCDEF* is a regular hexagon. *ABPQ* and *FARS* are two squares.

Т

18

27

[2]

′31°

(i) Calculate

(ii)	What is the special name given to triangle AQR?	[1]
	(c) acute $R\hat{B}A$.	[2]
	(b) obtuse $P\hat{A}S$,	[2]
	(a) reflex $P\hat{B}C$,	[1]

5 [The value of π is 3.142, correct to three decimal places.]

[The volume of a sphere is $\frac{4}{3} \pi r^3$.]

Diagram I

The diagrams show two ways of packaging 4 identical balls. The radius of each ball is 3 cm.

Diagram I shows a closed rectangular box with a square base. Each ball touches the top, the bottom and two sides of the box. Each ball also touches two other balls.

Diagram II shows a closed cylinder. The balls touch the ends and the side of the cylinder.

(a)	(i)	Write down the dimensions of the rectangular box.	[1]
	(ii)	Calculate the total surface area of the outside of this box.	[2]
(b)	Cal	culate the total surface area of the outside of the cylinder.	[2]
(c)	Cal	culate the total volume of the 4 balls.	[2]
(d)	Cal	culate, correct to three decimal places, the value of	
		$\frac{\text{volume of the cylinder}}{\text{volume of the box}}$	[2]
(e)	Hen	ce state which of the two containers has more space not occupied by the balls.	[1]

6 Answer the whole of this question on a sheet of graph paper.

The masses of 80 parcels sent out by a garden centre are given in the table below.

Mass (<i>m</i> kilograms)	$0 < m \leq 2$	$2 < m \leq 4$	$4 < m \le 6$	$6 < m \le 10$	$10 < m \le 15$
Frequency	12	18	20	20	10

(a)	Usi Cho	ng a scale of 1 cm to represent 1 kg, draw a horizontal axis for $0 \le m \le 15$. Soose a suitable scale for the vertical axis and draw a histogram to represent this data.	[3]			
(b)	Esti	imate the number of parcels which had a mass greater than 9 kg.	[1]			
(c)	Cal	culate an estimate of the mean mass.	[3]			
(d)	One parcel was chosen at random and not replaced. A second parcel was chosen at random from the remainder. Giving each answer as a fraction in its lowest terms, find the probability that					
	(i) both parcels were chosen from the $6 < m \le 10$ group,					
	(ii) one parcel was chosen from the $6 < m \le 10$ group and the other parcel was not chosen the $6 < m \le 10$ group.					

6

Section B [48 marks]

Answer **four** questions in this section.

Each question in this section carries 12 marks.

7 [The value of π is 3.142, correct to three decimal places.]

Diagram I shows a sector, *ADB*, of a circle. The centre of the circle is *C* and its radius is 6 cm. $A\hat{C}B = 120^{\circ}$.

(a) Calculate the length of the major arc *ADB*.

- (b) Two tangents are drawn to touch the circle at *A* and *B*. The tangents meet at *T*, to form the shape shown in Diagram II.
 - (i) Explain why $A\hat{T}B = 60^{\circ}$.
 - (ii) Calculate the length of *AT*.

(c) Four of the shapes shown in Diagram II are arranged to form the figure shown

This figure has rotational symmetry

in Diagram III.

of order 4.

(iii) Calculate the perimeter of the shape ADBT.

Diagram III

(i)	Write down the number of lines of symmetry in this figure.	[1]
(ii)	Calculate the angle (marked as x° in Diagram III) between each shape.	[1]
(iii)	Every second, the figure turns through 40° about its centre. Calculate the time it takes to make 108 revolutions. Give your answer in minutes and seconds.	[3]

8 Answer the whole of this question on a sheet of graph paper.

The table below gives some values of x and the corresponding values of y, where

$$y = 30 - 18x + x^3$$
.

x	-4	-3	-2	-1	0	1	2	3	4
y	38	57	58	47	30	13	2	3	22

(a)	Using a scale of 2 cm to represent 1 unit, draw a horizontal x-axis for $-4 \le x \le 4$.			
	Using a scale of 2 cm to represent 10 units, draw a vertical y-axis for $0 \le y \le 60$.			
	On your axes, plot the points given in the table and join them with a smooth curve.			

(b) Use your graph to find

(i)	the largest value of	$30 - 18x + x^3$	in the interval	$-4 \leq x \leq 4,$	[1]
-----	----------------------	------------------	-----------------	---------------------	-----

- (ii) the smallest value of x for which $30 18x + x^3 = 50$. [1]
- (c) By drawing a tangent, find the gradient of the curve when x = 1. [2]
- (d) A is the point (0, 27) and B is the point (3, 3).

(i)	Draw, on the axes used in part (a), the line which passes through A and B.	[1]
(ii)	Find the equation of <i>AB</i> .	[2]
(iii)	The x coordinates of the points where the line AB intersects the curve are the solutions o equation $x^3 + ax + b = 0$.	f the
	Find the value of a and the value of b.	[2]

The diagram shows a straight line *ABC* and a point *D*. $AB = 22 \text{ cm}, BD = 19 \text{ cm}, A\widehat{B}D = 60^{\circ} \text{ and } B\widehat{C}D = 34^{\circ}.$

Calculate

(a)	the length of <i>BC</i> ,	[4]
(b)	the length of <i>AD</i> ,	[4]
(c)	the area of triangle ABD,	[2]
(d)	the shortest distance from <i>B</i> to <i>AD</i> .	[2]

10 The distance between two houses, P and Q, is 200 km. Joe travelled by car from P to Q at an average speed of x km/h.

- (a) Write down an expression, in terms of x, for the number of hours he took to travel from P to Q. [1]
- (b) He returned from Q to P at an average speed of (x + 5) km/h.Write down an expression, in terms of x, for the number of hours he took to travel from Q to P.
- (c) The total time he took to go from P to Q and to return from Q to P was 8 hours.
 - (i) Write down an equation in x and show that it simplifies to

$$x^2 - 45x - 125 = 0.$$
 [4]

- (ii) Solve the equation $x^2 45x 125 = 0$, giving each answer correct to 2 decimal places. [4]
- (iii) Calculate, correct to the nearest minute, the time he took to travel from P to Q. [2]

11 (a)
$$\overrightarrow{OP} = \begin{pmatrix} -9\\ 40 \end{pmatrix}$$
 and $\overrightarrow{OQ} = \begin{pmatrix} 3\\ -16 \end{pmatrix}$.

Find

- (i) $|\overrightarrow{OP}|$, [2] (ii) \overrightarrow{PQ} . [1]
- (b) In the diagram, *ABC* and *EBD* are two straight lines.

Angle *EAB* = angle *CDB*.

AB = 2 cm, BC = 6 cm and BD = 4 cm.

4

D

- (i) Explain why triangle *ABE* is similar to triangle *DBC*. [1]
- (ii) Explaining your working fully, show that BE = 3 cm. [2]

(iii) Write down, as a fraction in its lowest terms, the value of

$$\frac{\text{area of triangle } ABE}{\text{area of triangle } DBC}.$$
[1]

(iv)	It is given that $\overrightarrow{AB} = \mathbf{p}$ and $\overrightarrow{DB} = \mathbf{q}$. Express each of the following in terms of \mathbf{p} and/or \mathbf{q}				
	(a) \overrightarrow{BC} ,	[1]			
	(b) \overrightarrow{BE} ,	[1]			
	(c) \overrightarrow{AE} ,	[1]			
	(d) \overrightarrow{DC} .	[1]			
(v)	Use your answers to parts (iv)(c) and (d) to explain why AE is not parallel to DC .	[1]			

BLANK PAGE

BLANK PAGE

BLANK PAGE

CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level MATHEMATICS (SYLLABUS D) PAPER 1

4024/1

Rupee version MAY/JUNE SESSION 2002 2 hours

Candidates answer on the question paper. Additional materials: Geometrical instruments

TIME 2 hours

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided on the question paper.

If working is needed for any question it must be shown in the space below that question.

Omission of essential working will result in loss of marks.

NEITHER ELECTRONIC CALCULATORS NOR MATHEMATICAL TABLES MAY BE USED IN THIS PAPER.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 80.

FOR EXAMINER'S USE

This question paper consists of 16 printed pages.

University of Cambridge http://www.xtremepapers.net

(a) Calculate the value of $10 - 5 + 2$. (b) Express 0.0032 in standard form. <i>Answer</i> (a)	Λ		C_{a1c}	ulate the	$luo of 16 0 \cdot 7$	ר			
 (b) Express 0.0032 in standard form. Answer (a)	4	(a)	Calc	ulate the va	lue of $16 - 8 \div 2$	2.			
Answer (a) [] (b) [] (b) [] (c) []		(b)	Expr	ress 0.0032	in standard forn	n.			
Answer (a) [] (b) [] (b) [] (c) []									
(a) By making tally marks, or otherwise, obtain the frequency distribution of the colours. Answer (a) [1] (b)						Λ	nswar (a)		[1]
5 Mr. Smith asked the children in his class 'What is your favourite colour?' 5 Mr. Smith asked the children in his class 'What is your favourite colour?' $Green$ Blue Green Blue Green Red Blue Green Blue Yellow Green Yellow Blue Green Blue Yellow Green Yellow Blue Yellow Blue Green Blue Green Yellow Blue Yellow Green Blue Green Yellow Blue Yellow (a) By making tally marks, or otherwise, obtain the frequency distribution of the colours. Answer (a) Image: Colour foreen Frequency Green Blue Green Blue Frequency Image: Colour foreen Image: Colou						Г	(h)		[1]
5 Mr. Smith asked the children in his class 'What is your favourite colour?' Their replies are given below. Image: Green Blue Yellow Blue Green Blue Yellow Blue (a) By making tally marks, or otherwise, obtain the frequency distribution of the colours. Answer (a) (b) State the mode of this distribution. A translation maps P onto Q. Write down the column vector which represents this translation. (b) Find the coordinates of the midpoint of PQ. Image: Answer (a)							(0)		
Green Blue Green Yellow Blue Green Red Blue Green Blue Yellow Green Yellow Blue Yellow Blue Blue Green Blue Yellow Green Blue Green Yellow Blue Yellow Green Blue Green Yellow Blue Yellow (a) By making tally marks, or otherwise, obtain the frequency distribution of the colours. Answer (a) $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ (a) By making tally marks, or otherwise, obtain the frequency distribution of the colours. $Answer (a)$ $\overline{0}$ (a) Bue $\overline{0}$ <td< td=""><td>5</td><td>Mr. The</td><td>Smith ir repl</td><td>h asked the lies are give</td><td>children in his c en below.</td><td>elass 'What is you</td><td>ur favourite co</td><td>lour?'</td><td></td></td<>	5	Mr. The	Smith ir repl	h asked the lies are give	children in his c en below.	elass 'What is you	ur favourite co	lour?'	
Yellow Green Yellow Blue Yellow Blue Blue Green Blue Yellow Green Blue Green Yellow Blue (a) By making tally marks, or otherwise, obtain the frequency distribution of the colours. Answer (a) \hline \hline \hline \hline \hline (a) By making tally marks, or otherwise, obtain the frequency distribution of the colours. $Answer (a)$ \hline (a) By making tally marks, or otherwise, obtain the frequency distribution of the colours. $Answer (b)$ \hline (b) State the mode of this distribution. $Answer (b)$ \hline $\begin{bmatrix}$ (b) State the mode of this distribution. $Answer (b)$ $\begin{bmatrix}$ $\begin{bmatrix}$ (c) $\begin{bmatrix}$ $\begin{bmatrix}$ P is the point (1, 1) and Q is the point (5, -2). $\begin{bmatrix}$ $\begin{bmatrix}$ P				Green Green	Blue Red	Green Blue	Yellow Green	Blue Blue	
Green Blue Green Yellow Blue (a) By making tally marks, or otherwise, obtain the frequency distribution of the colours. Answer (a) \boxed{Colour} Frequency Green Blue Blue Blue Red Blue Yellow Image: Colour of the colours of the colour of the colours of the colour of the				Yellow Blue	Green Blue	Yellow Green	Blue Blue	Yellow Yellow	
(a) By making tally marks, or otherwise, obtain the frequency distribution of the colours. Answer (a)				Green	Blue	Green	Yellow	Blue	
Green Image: Second stript of the strip		(a) Ans	By n wer	naking tally (<i>a</i>)	marks, or other	wise, obtain the	frequency dist	ribution of the colou	rs.
Blue $ $		(a) Ans	By n wer	naking tally (<i>a</i>)	marks, or other	wise, obtain the	frequency dist	ribution of the colou	rs.
Red Image: Second		(a) Ans	By n wer	naking tally (<i>a</i>) Col Gre	marks, or other our en	wise, obtain the	frequency dist	ribution of the colou	rs.
Yellow [1] (b) State the mode of this distribution. Answer (b)		(a) Ans	By n wer	naking tally (a) Col Gre Blu	our en	wise, obtain the	frequency dist	ribution of the colou quency	rs.
 (b) State the mode of this distribution. Answer (b)		(a) Ans	By n wer	naking tally (<i>a</i>) Col Gre Blu Rec	marks, or other our en e	wise, obtain the	Frequency dist	ribution of the colou quency	rs.
 6 P is the point (1, 1) and Q is the point (5, -2). (a) A translation maps P onto Q. Write down the column vector which represents this translation. (b) Find the coordinates of the midpoint of PQ. 		(a) Ans	By n wer	naking tally (<i>a</i>) Col Gre Blu Rec Yel	our en e l low	wise, obtain the	Frequency dist	ribution of the colou	rs. [1]
 (a) A translation maps P onto Q. Write down the column vector which represents this translation. (b) Find the coordinates of the midpoint of PQ. 		(a) Ansv (b)	By n wer State	(<i>a</i>) (<i>a</i>) (<i>c</i>)(our en e l low	on. A	frequency distribution of the second	ribution of the colou	rs. [1]
(b) Find the coordinates of the midpoint of <i>PQ</i> . Answer (a) $\begin{pmatrix} \\ \end{pmatrix}$ [1]	6	(a) Ans (b) P is	By n wer State	(<i>a</i>) (<i>a</i>) (<i>a</i>) (<i>c</i>) (<i>G</i>)(marks, or other our en e l low of this distribution and Q is the poin	wise, obtain the solution on. And the solution of the solution	Frequency distribution of the second	ribution of the colou	rs. [1] [1]
Answer (a) $\begin{pmatrix} & \\ & \end{pmatrix}$ [1]	6	 (a) Ans (b) <i>P</i> is (a) 	By n wer State the p A tra Writ	(<i>a</i>) (<i>a</i>) (<i>a</i>) (<i>c</i>) (<i>G</i>)(our en e l low of this distribution and Q is the point aps P onto Q . column vector v	on. Ant (5, -2).	frequency distr Frequency distr Frequency distr <i>Inswer</i> (b)	initial problem initial problem	rs. [1] [1]
	6	 (a) Ans (b) P is (a) (b) 	By n wer State the p A tra Writ Find	(<i>a</i>) (<i>a</i>) (<i>a</i>) (<i>c</i>) (<i>G</i>) (<i>G</i>) (<i>G</i>) (<i>B</i>) (<i>B</i>) (<i>B</i>) (<i>B</i>) (<i>B</i>) (<i>G</i>)(our en e l low of this distribution and Q is the point aps P onto Q . column vector vec	wise, obtain the solution of PQ .	frequency distribution of the stranslation	puency	rs. [1] [1]
	6	 (a) Anst (b) P is (a) (b) 	By n wer State the p A tra Writ Find	(<i>a</i>) (<i>a</i>) (<i>a</i>) (<i>c</i>) (<i>G</i>) (<i>G</i>) (<i>G</i>) (<i>B</i>) (<i>R</i>) (<i>B</i>) (<i>R</i>) (<i>Y</i>)(our en e l low of this distribution and Q is the point aps P onto Q . column vector weather the midp	wise, obtain the solution of PQ .	this translation	ibution of the colou	rs. [1] [1]

For 4 Examiner's Examiner's Use 7 The diagram shows a lighthouse, L, L Q Ν and two ports P and Q. 80° Q is due east of L and $P\hat{L}Q = 80^{\circ}$. P and Q are each 10 km from L. Find (a) $L\hat{Q}P$, (b) the bearing of Q from P, (c) the bearing of L from P. Answer (a) [1] *(b)* [1] *(c)* [1] 8 Solve the simultaneous equations 2y = 3x - 13,5x - 6y = 23. Answer $x = \dots$

For

						•	5				
9	There are 50 people on a tour. One day, 26 people went on the morning cruise and 29 to the evening barbecue.										
	(a)	It was Expla	s thought ain why t	that 4 pt this was	people w not poss	vent to both sible.	events and 1	pei	rson to neither.		
		_	-]		
)			
	Answ	wer ((<i>a</i>)								
								•••••			[1]
							Answei	r ((<i>b</i>) Least numbe	r	[1
							Answei	r ((b) Least numbe Greatest num	r	[1]
10	Con	sider t	the seque	nce 1 ³ -	-2, 2 ³ -4	4, 3 ³ -6, 4 ³	Answer –8,	r ((b) Least numbe Greatest num	r	[1
10	Con: (a)	sider t Write	the seque e down th	nce 1 ³ - te 5 th ter	-2, 2 ³ -4	4, 3 ³ –6, 4 ³ . e sequence.	Answei –8,	r ((b) Least numbe Greatest num	r	[1
10	Con: (a) (b)	sider t Write Write	the seque down th down, in	nce 1^3 - te 5^{th} ter n terms of	-2, 2 ³ –4 rm of the of <i>n</i> , an	I, 3 ³ –6, 4 ^{3.} e sequence. expression	<i>Answer</i> –8,	r ((<i>b</i>) Least numbe Greatest num	r ıber	[1
10	Con: (a) (b) (c)	sider t Write Write Evalu	the seque e down th e down, in late the 1	nce 1 ³ - te 5 th ter n terms o 0 th term	-2, 2^3 -4 rm of the of <i>n</i> , an	4, 3 ³ –6, 4 ³ . e sequence. expression sequence.	Answer –8, for the <i>n</i> th ter	r ((<i>b</i>) Least numbe Greatest num	r ıber	[1
10	Con: (a) (b) (c)	sider t Write Write Evalu	the seque e down th e down, in late the 1	nce 1^3 - te 5^{th} ter n terms o 0^{th} term	-2, 2^{3} -4 rm of the of <i>n</i> , an of the s	4, 3 ³ –6, 4 ³ . e sequence. expression sequence.	Answer –8, for the <i>n</i> th ter	r ((<i>b</i>) Least numbe Greatest num	r ıber	[1,
10	Con: (a) (b) (c)	sider t Write Write Evalu	the seque e down th e down, in late the 1	nce 1 ³ - te 5 th ter n terms o 0 th term	-2, 2^3 –4 rm of the of <i>n</i> , an of the s	4, 3 ³ –6, 4 ^{3.} e sequence. expression sequence.	Answer –8, for the <i>n</i> th ter	r ((<i>b</i>) Least numbe Greatest num	r ıber	[1
10	Con (a) (b) (c)	sider t Write Write Evalu	the seque e down th e down, in late the 1	nce 1 ³ - te 5 th ter n terms o 0 th term	-2, 2^3 –4 rm of the of <i>n</i> , an a of the s	4, 3 ³ –6, 4 ^{3.} e sequence. expression sequence.	Answer –8, for the <i>n</i> th ter Answer	r ((b) Least numbe Greatest num of the sequence. 	r ıber	[1
10	Con (a) (b) (c)	sider t Write Write Evalu	the seque e down th e down, in late the 1	nce 1 ³ – le 5 th ter n terms o 0 th term	-2, 2^3 -4 rm of the of <i>n</i> , an a of the s	4, 3 ³ –6, 4 ³ . e sequence. expression sequence.	Answer –8, for the <i>n</i> th ter Answer	r (rm	 (<i>b</i>) Least numbe Greatest num of the sequence. (<i>a</i>) (<i>b</i>) 	r	[1]

For Examiner's Use		7	For Examiner's Use
0.00	13	It is given that $f: x \mapsto m + nx$, where <i>m</i> and <i>n</i> are constants. Given also that $f(0) = 1$ and $f(4) = 21$, find the value of	
		(a) <i>m</i> ,	
		(b) <i>n</i> ,	
		(c) $f^{-1}(21)$.	
		Answer (a) = [1]	
		Answer (a) $m = \dots$ [1]	
		$(c) f^{-1}(21) = \dots $	
	14	In 2000 Esther went to a tennis tournament. Her ticket cost Rs700. At the tournament she bought a programme costing Rs60 and an ice cream costing Rs40.	
		Calculate the angle of the sector which represents the amount she spent on ice cream.	
		(b) In 2001 the cost of a ticket was Rs735. Calculate the percentage increase in the cost of a ticket.	
		Answer (a)	

8

For Examiner's Use

In the diagram in the answer space, *TC*, *TD* and *AB* are straight lines. 15 (a) Construct the locus of the points which are equidistant from *TC* and *TD*. (b) Construct the locus of the points which are equidistant from *A* and *B*. (c) The two loci meet at *P*. AB is a chord of a circle, centre P. Draw the circle. Answer

For

Examiner's

For Examiner's Use

19 The cumulative frequency curve shows the distribution of the times of 300 competitors in a women's marathon race.

Use the curve to answer the following questions.

- (a) The race was won by Tegla.Find her time, giving your answer in hours and minutes.
- (b) Find the median time in hours **and** minutes.
- (c) The qualifying time for the Olympic Games was achieved by ten percent of the runners. The race began at 11.30. At what time did the last qualifying athlete finish the race? Express your answer using the 24 hour clock.

Answer (a) h min [1]

- (b) h min [1]
- (c) [2]

1					12							
	0 V v Wh	aries inversely a nen $P = 3, V = 1$	as <i>P</i> .									
	(a)	Express V in t	erms of P.									
	(b)	Complete the	table in the	e answer sj	pace.							
						Answer	(a)			•••••		. [2]
							(<i>b</i>)	-		_		
								<i>P</i>	3	5		
								V	1		9	[2]
2	1 Giv	ven that		$S = \frac{R}{2N}$	<u>V_</u> ,							
	(a)		value of S	3V when $R = 1$	-1 .00 and $V =$	-13,						
1	()	calculate the v										
	(b)	calculate the v express V in te	erms of <i>R</i> a	and S.								
	(b)	calculate the v express V in te	erms of <i>R</i> a	and S.								
	(b)	calculate the v express V in te	erms of <i>R</i> a	and S.								
	(b)	calculate the vexpress V in te	erms of <i>R</i> a	and S.								
	(b)	calculate the vexpress V in te	erms of <i>R</i> a	and S.								
	(b)	calculate the vexpress V in te	erms of <i>R</i> a	and S.								
	(b)	calculate the vexpress V in te	erms of <i>R</i> a	and S.								
	(b)	calculate the vexpress V in te	erms of <i>R</i> a	and S.								
	(b)	calculate the v express V in ta	erms of <i>R</i> a	and S.		Answer	(a) S	=				. [1]

For

For

MATHEMATICS (SYLLABUS D)

Paper 2

4024/02

May/June 2008

2 hours 30 minutes

Additional Materials:

Answer Booklet/Paper Electronic calculator Geometrical instruments Graph paper (1 sheet) Mathematical tables (optional)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet. Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A

Answer all questions.

Section B

Answer any **four** questions.

Show all your working on the same page as the rest of the answer.

Omission of essential working will result in loss of marks.

You are expected to use an electronic calculator to evaluate explicit numerical expressions. You may use mathematical tables as well if necessary.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 100.

This document consists of 11 printed pages and 1 blank page.

UNIVERSITY of CAMBRIDGE International Examinations

[Turn over

Section A [52 marks]

Answer all questions in this section.

1 (a) A flagpole is a cylinder of length 15 m and diameter 14 cm.

Calculate the volume of the flagpole. Give your answer in **cubic metres**.

(b) The flagpole, represented by *TP* in the diagrams below, is hinged at the point *P*. It is raised by using two ropes. Each rope is fastened to the top of the flagpole and the ropes are held at *A* and *B*. The points *A*, *P*, *B* and *T* are in a vertical plane with *A*, *P* and *B* on horizontal ground. TP = 15 m, AP = 23 m and BP = 12 m.

4024/02/M/J/08

www.xtremepapers.net

[3]

-
·2
•
~
_

2	(a)	Anı The Wh	Anne's digital camera stores its images on a memory card. The memory card has 128 units of storage space. When 50 images were stored, there were 40 units of unused storage space on the memory card.						
		(i)	Calculate the percentage of unused storage space on the memory card.	[1]					
		(ii)	Calculate the average amount of storage space used by each image.	[2]					
	(b)	Sho Sho thar	p A charged 60 cents for each photograph. p B charged 63 cents for each photograph and gave a discount of \$1 on all purchases more a \$10.						
		(i)	Anne bought 24 photographs from Shop A and paid with a \$20 note.						
			Calculate the change she received.	[1]					
		(ii)	Find how much cheaper it was to buy 24 photographs from Shop B than from Shop A.	[2]					
		(iii)	Find the smallest number of photographs for which it was cheaper to use Shop B.	[2]					
3	(a)	On	average, Jim's heart beats 75 times per minute.						
		Cal Giv	culate the number of times his heart beats during 50 weeks. e your answer in standard form.	[2]					
	(b)	 b) After an exercise, Ali and Ben measured their heart rates. The ratio of their heart rates was 15:17. Ben's heart beat 18 times per minute more than Ali's. 							
		Cal	culate Ali's heart rate.	[2]					
	(c)	The	recommended maximum heart rate, H , for a man during exercise, is given by the formula						
			$H=rac{4}{5}(220-n)$,						

where *n* years is the age of the man.

(i)	Calculate <i>H</i> when $n = 25$.	[1]
(ii)	Calculate <i>n</i> when $H = 144$.	[1]
(iii)	Make <i>n</i> the subject of this formula.	[2]

4024/02/M/J/08

4 (a) Show that each interior angle of a regular octagon is 135° .

In the diagram, *AB*, *BC*, *CD* and *DE* are four adjacent sides of a regular octagon. FA = FB = FC = FE. *CF* meets *BE* at *G*.

(i) Calculate [1] (a) *x*, **(b)** *y*, [1] [1] (c) *z*, (**d**) *t*. [1] (ii) Write down the special name given to the quadrilateral BCEF. [1] (iii) Given that FC = 10 cm, calculate CE. [2] (iv) (a) Show that $\triangle CGE$ is similar to $\triangle FGB$. [1] the area of ΔCGE **(b)** Find the area of ΔFGB [1]

4024/02/M/J/08

5 (a) Mary has 50 counters.

Some of the counters are square, the remainder are round. There are 11 square counters that are green. There are 15 square counters that are not green. Of the round counters, the number that are not green is double the number that are green.

By drawing a Venn diagram, or otherwise, find the number of counters that are

	(i)	round,	[1]
	(ii)	round and green,	[1]
	(iii)	not green.	[1]
(b)	Tina She You	has two fair, normal 6-sided dice. One is red and the other is blue. throws both of them once. may find it helpful to draw a possibility diagram to answer the following questions.	
	Fine	l, as a fraction in its lowest terms, the probability that	
	(i)	the red die shows a 2 and the blue die does not show a 2,	[1]

- (ii) the sum of the two numbers shown is equal to 5,
- (iii) one die shows a 3 and the other shows an even number.
- (c) Ann went on a car journey that was split into three stages. Two relevant matrices are shown below. The first matrix shows the average speed, in kilometres per hour, of the car during each stage.

The second matrix shows the time, in hours, taken for each stage.

				Time
	First	Second	Third	
Average speed	stage (40	stage 30	stage 50)	$\begin{pmatrix} 1\frac{1}{2} \\ 1 \\ 2\frac{1}{2} \end{pmatrix}$ First stage Second stage Third stage

(i) Find
$$\begin{pmatrix} 40 & 30 & 50 \end{pmatrix} \begin{pmatrix} 1\frac{1}{2} \\ 1 \\ 2\frac{1}{2} \end{pmatrix}$$
. [1]

(ii)	What information is given by the matrix obtained in part (i)?	[1]
(iii)	Calculate the average speed for the whole journey.	[1]

4024/02/M/J/08

[1]

[2]

- 6 Paul and Sam are two athletes who have training sessions together.On 80 sessions during 2007 they ran the same route, and their times were recorded.
 - (a) The cumulative frequency curve shows the distribution of Paul's times.

Use the curve to estimate

(i)	the median,	[1]
(ii)	the interquartile range,	[2]
(iii)	how often Paul took more than 64 minutes.	[1]
C		•••

(b) Sam's times had a lower quartile of 62.5 minutes, a median of 63 minutes and an upper quartile of 64 minutes.

State which athlete was the more consistent runner, giving a reason for your answer. [1]

4024/02/M/J/08

Section B [48 marks]

Answer **four** questions in this section.

Each question in this section carries 12 marks.

- 7 A, B, C, D and E are five different shaped blocks of ice stored in a refrigerated room.
 - (a) At 11 p.m. on Monday the cooling system failed, and the blocks started to melt. At the end of each 24 hour period, the volume of each block was 12% less than its volume at the start of that period.

(III)	11 p.m. on Monday	10°at
(:::)	Calculate its volume at 11 p.m. on the previous day.	[2]
(ii)	Block B had a volume of 6490 cm ³ at 11 p.m. on Tuesday.	[0]
	Calculate its volume at 11 p.m. on Wednesday.	[2]
(i)	Block A had a volume of $7500 \mathrm{cm}^3$ at 11 p.m. on Monday.	

(b) [The volume of a sphere is $\frac{4}{3}\pi r^3$.] [The surface area of a sphere is $4\pi r^2$.]

At 11 p.m. on Monday Block D was a hemisphere with radius 18 cm.

Calculate

(i)	its volume,	[2]
(ii)	its total surface area.	[2]
A a l	Plack E malted, its shape was always geometrically similar to its original shape	

(c) As Block E melted, its shape was always geometrically similar to its original shape. It had a volume of 5000 cm³ when its height was 12 cm.

Calculate its height when its volume was 1080 cm ²	. [2]
---	-------

4024/02/M/J/08

[Turn over

8 Answer the WHOLE of this question on a sheet of graph paper.

The table below shows some values of *x* and the corresponding values of *y*, correct to one decimal place, for

$$y = \frac{4}{5} \times 2^x$$
.

x	-2	-1	0	1	2	2.5	3	3.5	4
у	р	0.4	0.8	1.6	3.2	4.5	6.4	9.1	12.8

(a)	Cal	Calculate <i>p</i> . [1]			
(b)	Usi	ng a scale of 2 cm to represent 1 unit, draw a horizontal x-axis for $-2 \le x \le 4$.			
	Usi	ng a scale of 2 cm to represent 2 units, draw a vertical y-axis for $0 \le y \le 14$.			
	On	your axes, plot the points given in the table and join them with a smooth curve.	[3]		
(c)	As.	x decreases, what value does y approach?	[1]		
(d)	By	drawing a tangent, find the gradient of the curve at the point (3, 6.4).	[2]		
(e)	(i)	On the axes used in part (b), draw the graph of $y = 8 - 2x$.	[2]		
	(ii)	Write down the coordinates of the point where the line intersects the curve.	[1]		
	(iii)	The <i>x</i> coordinate of this point of intersection satisfies the equation			
		$2^x = Ax + B.$			

4024/02/M/J/08

9

The diagram shows the positions of a harbour, *H*, a lighthouse, *L*, and two buoys *A* and *B*. *HAB* is a straight line. The bearing of *A* from *H* is 042° . *HA* = 4.5 km, *AL* = 2.8 km and *HÂL* = 115°.

(a)	Find	the	bearing	of
< /			0	

(i)	H from A ,	[1]
(ii)	<i>L</i> from <i>A</i> .	[1]

(b)	Calculate	
(~)	Curculate	

(i)	HL,	[4]

	(ii)	the area of triangle HAL.	[2]
(c)	Ab	oat sailed from the harbour along the line HAB.	
	(i)	Calculate the shortest distance between the boat and the lighthouse.	[2]
	(ii)	The boat sailed at a constant speed of 3 m/s.	

Given that the boat reached A at 07 15, find at what time it left the harbour. [2]

4024/02/M/J/08

[Turn over

In the diagram, *ABCD* is a rectangle. AB = 12 cm and BC = 8 cm. AP = BQ = CR = DS = x centimetres.

10

- (a) Find an expression, in terms of *x*, for
 - (i) the length of QC, [1]
 - (ii) the area of triangle CRQ. [1]
- (b) Hence show that the area, in square centimetres, of the quadrilateral *PQRS* is $2x^2 20x + 96$. [3]
- (c) When the area of quadrilateral *PQRS* is 60 cm^2 , form an equation in x and show that it simplifies to $x^2 - 10x + 18 = 0.$ [1]
- (d) Solve the equation $x^2 10x + 18 = 0$, giving each answer correct to 2 decimal places. [3]
- (e) It is given that $2x^2 20x + 96 = 2(x 5)^2 + K$.
 - (i) Find the value of *K*.
 - (ii) Hence write down the smallest possible area of the quadrilateral *PQRS* and the value of *x* at which it occurs. [2]

[1]

4024/02/M/J/08

OT = 3OP, $RS = \frac{1}{6}RT$ and Q is the midpoint of PR. $\overrightarrow{OP} = \mathbf{p}$ and $\overrightarrow{PQ} = \mathbf{q}$.

	(a) \overrightarrow{OR} ,	[1]
	(b) \overrightarrow{RT} ,	[1]
	(c) \overrightarrow{QS} .	[2]
(ii)	Write down the value of $\frac{QS}{OR}$.	[1]

11 (a) The diagram shows triangles A, B, C and D.

4024/02/M/J/08

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

4024/02/M/J/08

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

	CANDIDATE NAME		
	CENTRE NUMBER	CANDIDATE NUMBER	
*			
<u>ه</u>	MATHEMATICS	S (SYLLABUS D)	4024/01
ω	Paper 1		Mav/June 2008
4	-1		
			2 hours
ω	Candidates ans	wer on the Question Paper.	
6	Additional Mate	rials: Geometrical instruments	
N			
*			

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.Write in dark blue or black pen.You may use a pencil for any diagrams or graphs.Do not use staples, paper clips, highlighters, glue or correction fluid.DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

If working is needed for any question it must be shown in the space below that question. Omission of essential working will result in loss of marks.

NEITHER ELECTRONIC CALCULATORS NOR MATHEMATICAL TABLES MAY BE USED IN THIS PAPER.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 80.

For Examiner's Use

This document consists of 14 printed pages and 2 blank pages.

UNIVERSITY of CAMBRIDGE International Examinations

[Turn over

4024/01/M/J/08

For

4024/01/M/J/08

www.xtremepapers.net

[Turn over

For

For

Use

© UCLES 2008

4024/01/M/J/08

4024/01/M/J/08

www.xtremepapers.net

[Turn over

Square	Rectangle
Kite	Trapezium

Parallelogram

Equilateral triangle

From this list, write down the name of the shape which always has

6

- (a) rotational symmetry of order 3,
- (b) rotational symmetry of order 2 and exactly 2 lines of symmetry,
- (c) one line of symmetry only.

Answer	(<i>a</i>)	[1]
	<i>(b)</i>	[1]
	(c)	[1]

12 Solve the simultaneous equations

$$2x - 3y = 13,$$

$$3x + y = 3.$$

y =[3]

© UCLES 2008

4024/01/M/J/08

13 The diagram is the speed-time graph of the first 20 seconds of a motorcyclist's journey.

7

- (a) Calculate the motorcyclist's retardation during the final 8 seconds.
- (b) Calculate the distance travelled in the 20 seconds.

(*b*) m [2]

[Turn over

4024/01/M/J/08

14 (a) A jar contained 370 g of jam. Usman ate 30% of the jam.

What mass of jam remained in the jar?

(b) In 2006 the population of a town was 30 000. This was 5000 more than the population in 1999.

Calculate the percentage increase in population.

Answer (a) g [1]

(b) % [2]

15 Express as a single fraction in its simplest form

$$\frac{3}{2t-1} - \frac{2}{t+2}.$$

Answer[3]

© UCLES 2008

4024/01/M/J/08

4024/01/M/J/08

www.xtremepapers.net

[Turn over

17		
1/	A st	traight line passes through the points $P(1, 2)$ and $Q(5, -14)$.
	Fin	d
	(a)	the coordinates of the midpoint of PQ,
	(b)	the gradient of PQ,
	(c)	the equation of <i>PQ</i> .
		Answer (a) (,
		(<i>b</i>)[1]
		(c)[2]
		0
18	The (a)	Earth is 1.5×10^8 kilometres from the Sun. Mercury is 5.81×10^7 kilometres from the Sun. How much nearer is the Sun to Mercury than to the Earth?
18	The	Earth is 1.5×10^8 kilometres from the Sun. Mercury is 5.81×10^7 kilometres from the Sun. How much nearer is the Sun to Mercury than to the Earth? Give your answer in standard form.
18	The (a) (b)	Earth is 1.5×10^8 kilometres from the Sun. Mercury is 5.81×10^7 kilometres from the Sun. How much nearer is the Sun to Mercury than to the Earth? Give your answer in standard form. A terametre is 10^{12} metres.
18	The (a) (b)	Earth is 1.5×10^8 kilometres from the Sun. Mercury is 5.81×10^7 kilometres from the Sun. How much nearer is the Sun to Mercury than to the Earth? Give your answer in standard form. A terametre is 10^{12} metres. Find the distance of the Earth from the Sun in terametres.
18	The (a) (b)	 Earth is 1.5 × 10⁸ kilometres from the Sun. Mercury is 5.81 × 10⁷ kilometres from the Sun. How much nearer is the Sun to Mercury than to the Earth? Give your answer in standard form. A terametre is 10¹² metres. Find the distance of the Earth from the Sun in terametres.
18	The (a) (b)	 Earth is 1.5 × 10⁸ kilometres from the Sun. Mercury is 5.81 × 10⁷ kilometres from the Sun. How much nearer is the Sun to Mercury than to the Earth? Give your answer in standard form. A terametre is 10¹² metres. Find the distance of the Earth from the Sun in terametres.
18	The (a) (b)	 Earth is 1.5 × 10⁸ kilometres from the Sun. Mercury is 5.81 × 10⁷ kilometres from the Sun. How much nearer is the Sun to Mercury than to the Earth? Give your answer in standard form. A terametre is 10¹² metres. Find the distance of the Earth from the Sun in terametres.
18	The (a) (b)	 Earth is 1.5 × 10⁸ kilometres from the Sun. Mercury is 5.81 × 10⁷ kilometres from the Sun. How much nearer is the Sun to Mercury than to the Earth? Give your answer in standard form. A terametre is 10¹² metres. Find the distance of the Earth from the Sun in terametres.
18	The (a) (b)	Earth is 1.5×10^8 kilometres from the Sun. Mercury is 5.81×10^7 kilometres from the Sun. How much nearer is the Sun to Mercury than to the Earth? Give your answer in standard form. A terametre is 10^{12} metres. Find the distance of the Earth from the Sun in terametres.
18	The (a) (b)	 Earth is 1.5 × 10⁸ kilometres from the Sun. Mercury is 5.81 × 10⁷ kilometres from the Sun. How much nearer is the Sun to Mercury than to the Earth? Give your answer in standard form. A terametre is 10¹² metres. Find the distance of the Earth from the Sun in terametres.

(*b*) terametres [2]

4024/01/M/J/08
For Examiner's Use

e **19** (a) Factorise completely (i) $15x^2 + 10x$, (ii) $t^2 - 2t - 15$. (b) Solve 4(x - 0.3) = 3(x - 0.2).

(*b*) x =[2]

20 It is given that

$$\mathbf{A} = \begin{pmatrix} 5 & -1 \\ 2 & 3 \end{pmatrix} \qquad \qquad \mathbf{B} = \begin{pmatrix} 2 & -2 \\ 0 & 1 \end{pmatrix} \qquad \qquad \mathbf{C} = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix}.$$

Find

(a)
$$\mathbf{A} - 2\mathbf{B}$$
,

(b) C^{-1} .

4024/01/M/J/08

01	(2)	
21	(a)	Solve $8 - 3t > 14 + t$.
	(b)	Evaluate $x^2 - 6xy + 2y^2$ when $x = 2$ and $y = -3$.
		Answer (a) t[2]
		(<i>b</i>)[2]
22	(a)	The <i>n</i> th term of a sequence is $7 - 2n$.
		Write down the 23rd term in this sequence.
		Answer (a)[1]
	(b)	(i) The first five terms of another sequence are
		4 7 10 13 16.
		Write down an expression, in terms of n , for the n th term of this sequence.
		(ii) The first five terms of another sequence are
		$\frac{4}{1}$ $\frac{7}{4}$ $\frac{10}{9}$ $\frac{13}{16}$ $\frac{16}{25}$.
		(a) Write down the next term in this sequence.
		(b) Write down an expression, in terms of n , for the <i>n</i> th term of this sequence.
		Answer (b) (i)[1]
		(<i>b</i>)(ii)(<i>a</i>)[1]
		(<i>b</i>)(ii)(<i>b</i>)[1]

4024/01/M/J/08

www.xtremepapers.net

[Turn over

14

24 (a) Fifty students were asked how many books they each took to school on Monday. The results are summarised in the table below.

Number of books	0	1	2	3	4	5	6	7
Frequency	10	11	8	3	6	7	4	1

- (i) Write down the median.
- (ii) Calculate the mean number of books.
- (iii) What is the probability that two students, chosen at random, both took 5 books to school?

Give your answer as a fraction in its simplest form.

Answer (a)(i)[1]

(ii)[3]

(iii)[2]

(b) The fifty students were also asked how long they each took to travel to school. The results are summarised in the table below.

Time of travel (<i>t</i> minutes)	$4 \le t < 6$	$6 \le t < 8$	$8 \le t < 10$	$10 \le t < 12$
Frequency	21	11	13	5

Draw a frequency polygon on the grid below to illustrate this data.

Answer (b)

© UCLES 2008

4024/01/M/J/08

www.xtremepapers.net

Use

BLANK PAGE

4024/01/M/J/08

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

4024/01/M/J/08

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the May/June 2008 question paper

4024 MATHEMATICS

4024/02

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Type of mark

In general:

- (i) <u>'M' marks</u> are awarded for any correct method applied to the appropriate numbers, even though a numerical error may be involved.
 - a) Once earned they cannot be lost.
 - b) They are earned for a numerical statement which is usually explicit as regards the quantity to be found.
 - c) e.g. the use of a wrong formula, wrong trigonometrical ratio or misapplication of 'Pythagoras' is wrong method.
- (ii) <u>'A' marks</u> are awarded for a numerically correct stage, for a correct result or for an answer lying within a specified range.
 - a) They are given only if the relevant 'M' mark has been earned.
 - b) They are not given for a correct result following an error in working.
- (iii) <u>'B' marks</u> are independent of method and are usually awarded for an accurate result or statement.
- (iv) In graph or drawing questions some marks may carry a letter (e.g. G4 for drawing the graph, Q1 for quality, L3 for drawing loci) to make their identification easier.

Abbreviations which may be used in mark schemes or in comments on scripts:

A.G.	Answer given
b.o.d.	Benefit of doubt
c.a.o.	Correct answer only
(in)dep	(In) dependent
Ex.Q.	Extra question
1	Follow through
1	Further error made
I.S.W.	Ignore subsequent working
M.R.	Misread
o.e.	Or equivalent
O.W.	Omission of essential working
P.A.	Premature approximation
S.C.	Special case
s.o.i.	Seen or implied
S.O.S.	See other solution
t.&e.	Trial and error
W.W.	Without working (i.e. answer only seen)
W.W.W.	Without wrong working
(£) or (°)	Condone the omission of the £ or degree sign etc.

Page 3				Mark Scheme				Syllabus	Paper
				GCE O LEVEL – Ma	y/June 20	08		4024	02
1 (:	a)		$\pi \times \pi \times 0.22$	(fig 7) ² × 15 or figs 23 0.07 ² × 15 or π 7 ² × 1500 3 to 0.231	M1 A1 A1	[3]	Condone SC1 for	e 14/2 for M1 $0.92 \rightarrow 0.924$	
(1	b) (i	i)	cos	$T\hat{P}A = \frac{15}{23}$	M1		For any appropri	<u>complete</u> methods ate M+ A marks	allow
			49.2	29 to 49.3	A1	[2]	GRAD A (i) 54.	ANSWERS 77	
		(ii)	$\frac{12}{\sin}$	$\frac{2}{T} = \frac{15}{\sin 37}$	M1		(ii) 28 (iii) 33.	.94→ 97	
			sin	$T = \frac{12\sin 37}{15} = (28.7 - 29)$	M1				
			BŶ	T = 114 - 114.22	A1	[3]			
	(1	iii)	tan∠	$4 = \frac{15}{22}$	M1				
			A =	= 33 to 33.12	A1	[2]	SC1 for	56.8 to 56.9	
2 (:	a) (i	i)	31.2	2 to 31.3	B1	[1]			
	(ii)	128	$\frac{3-40}{50}$ o.e.	M1				
			1.70	50	A1	[2]			
(b) (i	i)	(\$)5	5.6(0)	B 1	[1]	560 (c) v	/	
	(1	ii)	sho 28(p B (\$)14.1(2) soi c)	B1 B1	[2]	(\$)0.28	(
	(1	iii)	16		B2	[2]	SC1 for	15	
3 (a)		75 :	$\times 60 \times 24 \times 7 \times 50$ or figs 378 or	M1				
			11gs 3.78	3×10^7	A1	[2]			
0	b)		$\frac{18}{2}$	$=\frac{x}{15}$ o.e.	M1		e.g. $\frac{x}{15}$	$\frac{18+x}{5} = \frac{18+x}{17}$ or $\frac{x}{15}$	$=\frac{2x+18}{32}$
			135		A1	[2]			

Page 4	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – May/June 2008	4024	02

	(c)	(i)	156	B1		
		(ii)	40	B 1		
		(iii)	$220 - \frac{5H}{4}$ o.e isw	B2	[4]	SC1 for $(\pm) \frac{5H}{4}$ soi <u>or</u> any correct expression for $-n$
4	(a)	(i)	Ext. angle = $\frac{360}{8}$ or Sum of int $\angle = (2.8 - 4) \times 90$ o.e. Correct method $\rightarrow 135$	M1 A1	[2]	AG
	(0)	(1)	$x = 22\frac{1}{2}$	B 1		
			y = 45 z = 45	B1 B1		
			$t = -67 \frac{1}{2}$	DI DI	[4]	
			$\frac{1-6}{2}$	DI	[4]	
		(ii)	Trapezium	B 1	[1]	Any recognizable word.
		(iii)	$CE = \sqrt{100 + 100}$ or 10	MI		
			$CE = \sqrt{100 + 100} \text{or} \frac{1}{\sin/\cos 45}$	MI I		
			$= 14.1 \rightarrow 14.2$	A1	[2]	
		(iv) (a) (b)	$y = z$, $B\hat{G}F = E\hat{G}C$, $(F\hat{B}G = G\hat{E}C)$ 1.96 \rightarrow 2.02	B1 B1	[2]	Accept any 2. Or any equivalent integer fraction.
5	(a)	(i)	24	B1		
		(ii)	8	B1		
		()	21	D1	[2]	
		(111)	31	BI	[3]	
	(b)	(i)	$\frac{5}{36}$	B1		
		(ii)	$\frac{1}{9}$ o.e.	B1		-1 once for un-simplified answers in (b)(i), (ii), (iii)
		(iii)	$\frac{1}{6}$ o.e.	B2	[4]	SC1 for $\frac{1}{12}$

Page 5	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – May/June 2008	4024	02

	(c)	(i)	(215)	B 1		Condone 215
		(ii)	(Total) distance (travelled)	B 1		Dep. on single element in (c)(i).
		(iii)	43(km/h) J	B1	[3]	✓ their 215 ÷ 5, can be from 3 elements in (c)(i).
6	(a)	(i)	64.2	B 1		Accent answers correcting to
		(ii)	Either 64.5 or 63.6 0.9	M1 A1		any of these values
		(iii)	50 cao	B 1	[4]	
	(b)		Paul – smaller IQR 🦨	B1	[1]	Provided answer to (a)(ii) is < 1.5
7	(a)	(i)	7500×0.88^2 o.e. 5808 or 5810	M1 A1	[2]	
		(ii)	$6490 \times \frac{100}{88}$ o.e.	M1		
			7375 or 7370 or 7380	A1	[2]	
		(iii)	100, 88, 77, 68, (60, 53, 46.4) o.e. 6 th day or Sunday	M1 A1	[2]	
	(b)	(i)	$\frac{4}{3}\pi.18^3\times\frac{1}{2}$	M1		
			$12200 \rightarrow 12220$	A1	[2]	SC1 for $24400 \rightarrow 24440$
		(ii)	$2\pi 18^2 + \pi 18^2$ $3050 \rightarrow 3055$	M1 A1	[2]	
	(c)		Use of $\left(\frac{h}{12}\right)^3$ or $\left(\frac{1080}{5000}\right)^{\frac{1}{3}}$	M1		
			$7.1 \rightarrow 7.3$	A1	[2]	

Page 6	Page 6 Mark Scheme		Paper	
	GCE O LEVEL – May/June 2008	4024	02	

8	(a)	0.2	B1	[1]	
	(b)	Correct scales 8 correct plots (within 1mm) Smooth increasing curve (not grossly thick) through at least 5 of his plots	S1 P1 C1	[3]	Condone reversed axes. Accept if curve goes through correct point(s) [Ignore $x < -1$]
	(c)	0	B1	[1]	
	(d)	Clear attempt at tangent (be generous) $4 \rightarrow 5$	T1 G1	[2]	Accept integer fractions.
	(e) (i)	Straight line thro' (08) And thro' (4,0)	L1 L1	[2]	Produce if necessary.
	(ii)	Approx (2.2, 3.6) [each coord ± 0.1] \checkmark	B1	[1]	
	(iii)	$A = -2\frac{1}{2}$ $B = 10$	B1 B1	[2]	SC1 for $\frac{4}{5}2^x = 8 - 2x$ seen
9	(a) (i)	222° 107°	B1 B1	[2]	
	(b) (i)	Attempt at cosine rule $HL^2 = 4.5^2 + 2.8^2 - 2 \times 4.5 \times 2.8 \cos 115$ 38.7 to 38.74 6.2 to 6.23	M1 M1 A1 A1	[4]	e.g. $4.5^2 + 2.8^2 \pm (2) 4.5 + 2.8 \cos 115/65$ HL can be implied by later working
	(ii)	$\frac{1}{2} \times 4.5 \times 2.8 \times \sin 115$ 5.7 to 5.71	M1 A1	[2]	Possible GRAD ANSWERS (b) (i) 33.77 5.83
	(c) (i)	$\frac{\text{Area}}{2.25}$ or 2.8 sin 65 2.53 to 2.54	M1 A1	[2]	(ii) 6.13 (c) (i) 2.39 or 2.72
	(ii)	$\frac{\text{DistHA}}{\text{Speed}} = \frac{4.5}{3}$	M1 A1	[2]	6 50 (am)
				[=]	

Page 7

10 (a)	(i)	8-x	B 1		
	(ii)	$\frac{1}{2}x(8-x)$	B1	[2]	Condone omission of brackets.
(b)		$\frac{1}{2}x(12-x)$	B1		Condone omission of brackets.
		$12 \times 8 - x(8 - x) - x(12 - x)$ Correct working to $2x^2 - 20x + 96$	M1 A1	[3]	Must see at least one step. AG
(c)		$2x^2 - 20x + 96 = 60$ & working	B 1	[1]	AG
(d)		For numerical $\frac{p \pm \sqrt{q}}{r}$ p = 10 and $r = 2$	B1		- ⁻¹⁰ not far enough but can be implied.
		$\sqrt{q} = 5.29$ or $q = 28$ 7.65 and 2.35 or 2.36	B1 B1	[3]	
(e)	(i)	<i>k</i> = 46	B1		
	(ii)	Area = 46 or his k \checkmark x = 5	B1 B1	[3]	
11 (a)	(i)	Translation $ \begin{pmatrix} -6 \\ 3 \end{pmatrix} $	B1 B1	[2]	Accept in words but not $(-6, 3)$ NB: mention of 2^{nd} transf. loses both marks in each part
	(ii)	Enlargement SF $-\frac{1}{2}$, Centre (-2, 1)	B1 B1	[2]	
	(iii)	Rotation 90° AC o.e. Centre (-1 0)	B1 B1	[2]	Accept +90°
	(iv)	$\begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}$	B1	[1]	
(b)	(i) (a) (b)	p + 2q o.e. 2p - 2q o.e.	B1 B1		-1 once for unsimplified answers.
	(c)	$\frac{1}{3}p + \frac{2}{3}q$ o.e.	B2	[4]	SC1 for $\overrightarrow{QS} = \overrightarrow{QR} + \frac{1}{6}\overrightarrow{RT}$ o.e. soi
					or ans. of $-\frac{1}{3}p - \frac{2}{3}q$
	(ii)	$\frac{1}{3}$ cao	B1	[1]	Allow only if correct OR and QS seen

MARK SCHEME for the May/June 2008 question paper

4024 MATHEMATICS

4024/01

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		Mark Schen	ne		Syllabus	Paper
		GCE O	LEVEL – May	/Jun	e 2008	4024	01
1	(a) $\frac{1}{14}$		1		In both parts, if ar accept fractions in	nswers decimal, n working	
	(b) $4\frac{2k}{3k}$		1	2	After 0 + 0, answe and {4.665 to 4.6	ers 0.0714(0) to 0. 7(0) or $\frac{14k}{3k}$ }	.07145 C1
2	(a) 6.7	oe	1				
	(b) (0).051	oe	1	2			
3	(a) -8		1				
	(b) $\frac{x-2}{5}$	oe	1	2	Must use <i>x</i>		
4	100 or 120		2	2	Answer with more or figs 1 or 12 or at least 2 of 9, 2	e sig figs which ro 2^2 and 0.3 seen	ounds to this C1 M1
5	(a) 160.27		1		Accept 160 or 160).3	
	(b) 6820		1	2			
6	26 (cm)		2	2	$\frac{10}{\sin \theta} \text{ or } \frac{10 \times 13}{5}$ Accept $\frac{10(\sin 90)}{\sin \frac{5}{13}}$	or $\sqrt{10^2 + 24^2}$ s - for M1	een M1
				[12]]		[12]
7	(a) $32x + 120$	$0 (\mathrm{cm}^2)$ oe	M1		Accept any equiva	alent seen anywhe	ere
	(b) 8 (cm)		2	3	Their (a) = 376 o [Their (a) must be	e seen e linear in <i>x</i>]	M1

	Page 3		Mark S		Syllabus Paper				
			GCE O LEVEL -	- May	/Jun	e 2008	4024	01	
8	(a)	1		1					
	(b)	$\frac{1}{81}$		1		Accept (0).0123(0	0) to (0).01235		
_	(c)	27		1	3	Accept ±27			
9	(a)	(BDC =)	42 (°)	1		Accept all answer answer or workin	rs on the diagram i g space	f not seer	n in
	(b)	(ABC =)	90 (°)	1					
	(c)	(ACB =) 4	48 (°) or 138 – their (b) \sqrt{ft}	1	3	√ft only allowed	$1 \text{ if } 0^\circ < ACB \le 90$	5°	
10	(a)	$y = 4x^2$ or $y = kx^2$	with $k = 4$ seen anywhere	2		$4x^2$ seen or $y = kx^2$ seen			M1 M1
	(b)	$\frac{3}{2}$ and -	$\frac{3}{2}$ oe www cao	1	3	Both required			
					[12]]			[12]
11	(a)	Equilatera	ıl triangle	1		Accept either wor	d alone		
	(b)	Rectangle		1					
	(c)	Kite		1	3				
12	<i>x</i> =	2 and <i>y</i> =	-3	3	3	One correct with or correct method condoning one [reaching such as	supporting work 1 to eliminate one e arithmetic slip 11x = k, kx = 22, or $ky = (-)33$]	ing variable , $11y = k$	C2 M1
13	(a)	3.75 or 3	$\frac{3}{4}$ or $\frac{30}{8}$ (m/s ²) oe	1		Accept -3.75 etc.			
	(b)	270 (m)		2	3 [9]	Correct method to	o find complete a	rea under	graph M1 [9]

	Pa	ige 4	Mark So	Mark Scheme					
			GCE O LEVEL –	May	/Jun	e 2008	4024	01	
14	(a)	259 (g)		1					
	(b)	20 (%)		2	3	120, $16\frac{2}{3}$ or 16.6	to 16.7 oe	C1	
						or fig $(\frac{5}{25}) (\times 100)$))	M1	
15	Fin	al answer	$\frac{8-t}{(2t-1)(t+2)}$ oe	3	3	8 - t and $(2t - 1)($	$(t+2)$ or $2t^2 + 3t - 3t$	- 2 M2	
						seen in single fract or $3(t+2) - 2(2t)$ with quadratic der [condoning missin	etion, not necessar -1) seen in single nominator ng brackets]	ily together fraction M1	
16	(a)	Ruled line	e from $(0, -2)$ to $(2, -1)$ drawn	1	Alle	by tolerance of $\frac{1}{2}$ s	small square		
	(b)	Correct re Allow	egion shaded and labelled R ft if line wrong if possible	2	3	Accept shaded in or Shaded in or of Allow C1 $\sqrt[3]{}$ (ft if If no line, shading x = 0, below $2y =$	or out if R correct ut, without R line wrong if poss g with R marked to 4 - 3x, not bound	C1 ible oright of C1 ed by $y = 0$	
					[9]			[9]	
17	(a)	(3, -6)		1					
	(b)	-4		1		Accept equivalent	ts, such as $\frac{-16}{4}$ o	$r \frac{16}{-4}$	
	(c)	y = -4x + Accept y	6 or 3 term equivalent = $-4x + c$ with $c = 6$ seen	2	4	3 term line of grad	dient their (b) or v 2) or (5, -14)	which C1	
						-4x + 6 alone	, _) = (e,)	C1	
18	(a)	9.19 × 10	⁷ (km)	2		Accept 9(or 9.2) > Correct answer no	< 10 ⁷ ot in standard forn	n C1	
						or $150\ 000\ 000 -$ or $15 \times 10^7 - 5.81$	$58\ 100\ 000$ × 10^7 seen	M1	
	(b)	$(0).15, \frac{1}{10}$	$\frac{5}{20}$ or $\frac{3}{20}$ (terametres)	2	4	$1.5 \times 10^8 \times 10^3$ / 1	0 ¹² seen	M1	
		П	50 20			1.5×10^{-4} oe see	en	S C1	

Page 5			5	Mark S	Syllabus	Paper			
				GCE O LEVEL -	– May	/Jun	e 2008	4024	01
19	(a)	(i) (ii)	5x(3)	(x + 2) 3)($t - 5$)	1	~	In both parts, igno condone missin If only solutions, a	ore extra brackets, ng outside brackets accept factors in w	orking
	(b)	(0).	6 oe		2	4	4x - 1.2 = 3x - 0.6	6 oe, or better seen	M1
20	(a)	$\begin{pmatrix} 1\\ 2 \end{pmatrix}$	$\begin{pmatrix} 3\\1 \end{pmatrix}$		2		At least 2 correct	elements	C1
	(b)	$\frac{1}{5}$	(4 (-3	$\begin{pmatrix} -1\\2 \end{pmatrix}$ oe	2	4 [16]	$\frac{1}{5}$ soi or $\begin{pmatrix} 4 \\ -3 \end{pmatrix}$	$\binom{-1}{2}$ soi	C1 [16]
21	(a)	(<i>t</i>) -	<-1.5	$, -1\frac{1}{2} \text{ or } -\frac{3}{2} \text{ oe } (\text{e.g.} -\frac{6}{4})$	2		t > -1.5 or -1.5 or -1.5 or $-6 > 4t$ or or be	alone etter seen	C1 M1
	(b)	58			2	4	At least two of +4	, +36 and +18 seer	n M1
22	(a)	-39)		1				
	(b)	(i)	3 <i>n</i> +	1 or any equivalent	1				
		(ii)	(a)	<u>19</u> 36	1				
			(b)	$\frac{3n+1}{n^2}$ or $\frac{\text{their}(\mathbf{b})(\mathbf{i})}{n^2}$	1	4			

	Pa	age	e 6			Mark Scheme							Syllabus	Pap	Paper		
								GC	ΈO	LEVE	EL – Ma	ıy/Ju	ne 2	008	4024	01	1
23	(a)	(i	i)	(1 :) 3	300 (000					1					
		(ii	i)	30	(k	m)						1		Accept answer	rs in range 29.5 to	o 30.5	
	(b)	С 7	or (±	rect	tri) a	angl nd 6	e dra (±0	awn v .2) cr	vith s n, arc	sides es visil	ble	2		No arcs seen, and/or sides ± and/or AC, BC	sides in wrong or 0.4 cm 7 not joined	der	C1
														If <i>C</i> on wrong	side of <i>AB</i> , other	wise corr	ect C1
	(c)	Р	erp	bend	lic	ular	bise	ctor o	f <i>AB</i>	drawr	1	1		Within 0.2 cm and within 2° Minimum leng	of centre of <i>AB</i> of perp gth 5 cm		
	(d)	F	ar	nd G	^e m	arke	ed co	orrect	ly J ∖	/ft		15	6 [14]	Each to be 3 (= perp bisector,	±0.2) cm from C even if C is below	on attemp <i>N AB</i>	ot at [14]
24	(a)	(i	i)	2								1					
		(ii	i)	2.5	2,	$2\frac{13}{25}$	- or	$2\frac{26}{50}$	WW	W		3		2.52 oe or 2.	5 seen www		
														or such as $\frac{126}{50}$	- seen		M2
														or $\frac{(0 \times 10) + 1}{10}$ (condoning on	$\frac{\times 11 + 2 \times 8 + 3 \times 3}{\times 11 + 8 + 3 + \dots}$ the error)	<u>}+</u>	M1
		(iii	i)	$\frac{3}{17}$	k 5k	0	e					2		$\frac{7}{50} \times \frac{6}{49}$ or $\frac{1}{50}$	$\frac{7}{50} \times \frac{6}{50}$ or better	seen	M1
	(b)	Ig P jc	gno lot oin	ore a s at ed v	iny he viti	y blo ight h str	ck d s 21, aigh	iagrai 11, 1 t lines	ms ar 3 an 5	nd outs d 5	side the	range 1	5 ≤	$t \le 11$ (Accept 10 ¹ / ₂ ,	5½, 6½ and 2½)		
		Т	im	e ax	is	scal	ed a	nd plo	ots at	5, 7, 9	9 and 11	1	8	independent			
													[8]				[8]

MATHEMATICS (SYLLABUS D)

Paper 2

4024/02

May/June 2007

2 hours 30 minutes

Additional Materials: Answer Booklet/Paper

Graph paper (1 sheet) Mathematical tables (optional)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet. Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Electronic calculator

Geometrical instruments

Section A

Answer all questions.

Section B

Answer any four questions.

Show all your working on the same page as the rest of the answer.

Omission of essential working will result in loss of marks.

You are expected to use an electronic calculator to evaluate explicit numerical expressions. You may use mathematical tables as well if necessary.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 100.

This document consists of 11 printed pages and 1 blank page.

UNIVERSITY of CAMBRIDGE International Examinations

[Turn over

Section A [52 marks]

Answer **all** questions in this section.

1 (a) The table shows the fares charged by a taxi company.

\$1.20 per kilometre for the first 10 km
then
80 cents for each additional kilometre after the first 10 km

- (i) Calculate the fare for a journey of
 - (**a**) 8 km,

(b) 24 km.

- [1]
- [1]
- (ii) Find the length of the journey for which the fare was \$16. [2]
- (b) The table gives the times of high tides at a harbour.

Date	May 5	May 6	May 7
Timos	1000	11 20	0036
Times	2256		1250

- (i) Calculate, in hours and minutes, the length of time between the high tide on May 6 and the morning high tide on May 7.
- (ii) Given that low tides occurred midway between high tides, calculate the time of the low tide on the afternoon of May 5. [2]
- (c) The height of a mountain is 1800 metres. It is suggested that this mountain has been worn away at an average rate of 0.15 mm per year. Assuming that the suggestion is correct, calculate the height of the mountain 20 million years ago. [2]

4024/02/M/J/07

<u>www.xtremepapers.net</u>

2 The diagram represents a framework.

BC = 1.3 m, BD = 1.9 m and BE = 1.5 m. $B\hat{C}D = 76^{\circ}, B\hat{A}E = 68^{\circ} \text{ and } B\hat{E}D = 90^{\circ}.$

Cal	cu	late

- (a) $D\hat{B}E$,
- **(b)** *AE*,
- (c) $B\hat{D}C$.

3	(a)	Express as a single fraction in its simplest form	$\frac{7}{6a}$	$-\frac{5}{9a}$.	[2]
---	-----	---	----------------	-------------------	-----

- **(b)** Simplify 3b(b-1) 2(b-2)(b+2).
- (c) The *n*th term of a sequence, *S*, is $n^3 + 2$. The first four terms are 3, 10, 29 and 66.
 - (i) Find the fifth term of *S*.
 - (ii) The first four terms of another sequence, *T*, are 4, 12, 32 and 70. By comparing *S* and *T*, write down
 - (a) the fifth term of *T*,
 - (b) an expression, in terms of n, for the n th term of T.
- (d) On Monday, two girls, Jane and Susan, collected some seashells. Jane collected *x* shells and Susan collected 22 more than Jane. On Tuesday, Susan gave 60 of her shells to Jane. The table shows the numbers of shells each girl had on the two days.

	Jane	Susan
Monday	x	<i>x</i> + 22
Tuesday	<i>x</i> + 60	у

(i)	Write down an expression for <i>y</i> in terms of <i>x</i> .	[1]
(ii)	Given that, on Tuesday, Jane had three times as many shells as Susan,	
	(a) write down and solve an equation in x ,	[2]
	(b) find the total number of shells the girls collected.	[1]

4024/02/M/J/07

[2]

[2]

[3]

[2]

[1]

[1]

[1]

(a) In a survey, some students were asked which of

three pictures, labelled *X*, *Y* and *Z*, they preferred.

The results are represented in the pie chart.

4

- (i) Calculate the percentage of students who preferred *X*.
- (ii) Find, in its simplest form, the ratio of the number of students who preferred *X* to those who preferred *Y*.

Give your answer in the form *m* : *n*, where *m* and *n* are integers.

(iii) Given that 44 students preferred *Y*, calculate the number of students who took part in the survey.

[2]

[1]

[1]

(b) In the diagram, *A*, *B*, *C* and *D* lie on a circle centre *O*.

4024/02/M/J/07

5 Emma noted the number of letters in each of the 25 words in an examination question. The results are given in the table below.

	1	Number of letters	2	3	4	5	6	7	8		
]	Frequency	2	6	5	5	4	0	3		
(a) For this distribution,											
	(i) write down the mode,										
	(ii) find the median,										
	(ii) find the median,(iii) calculate the mean.										
(b)	(b) Emma chose one word, at random, from the 25 words.										
	Fine	d the probability th	at this wo	rd had							
	(i)	5 or 6 letters,									
	(ii)	fewer than 9 lette	ers.								
(c) Peter chose one word, at random, from the 25 words.He then chose a second word, at random, from the remaining words.Expressing each answer as a fraction in its lowest terms, find the probability that											
	(i)	both words had 6	letters,								
	(ii)	one word had 2 lo	etters and	the other	had 4 lett	ers.					

4024/02/M/J/07

[Turn over

6

	(i)	CĎ,	[1]
	(ii)	\overrightarrow{OC} ,	[1]
	(iii)	\overrightarrow{DO} .	[1]
(c)	Wha	at type of triangle is OCD?	[1]
(d)	The	transformation P maps the rectangle OBCA onto the quadrilateral OBAD.	

[2]

(i)	Write down the coordinates of M' .	[1]
(ii)	Identify the transformation P.	[1]

It also maps M onto M'.

6

4024/02/M/J/07

Section B [48 marks]

Answer **four** questions in this section.

Each question in this section carries 12 marks.

7 (a) [The volume of a sphere is $\frac{4}{3}\pi r^3$.] [The surface area of a sphere is $4\pi r^2$.]

A wooden cuboid has length 20 cm, width 7 cm and height 4 cm. Three **hemispheres**, each of radius 2.5 cm, are hollowed out of the top of the cuboid, to leave the block as shown in the diagram.

	(i)	Calculate the volume of wood in the block.	[3]
	(ii)	The four vertical sides are painted blue. Calculate the total area that is painted blue.	[1]
((111)	The inside of each hemispherical hollow is painted white. The flat part of the top of the block is painted red. Calculate the total area that is painted	
		(a) white,	[2]
		(b) red.	[2]
(b)	The Whe Calc	volume of water in a container is directly proportional to the cube of its depth. en the depth is 12 cm , the volume is 576 cm^3 . culate	
	(i)	the volume when the depth is 6 cm,	[2]
	(ii)	the depth when the volume is $1300 \mathrm{cm}^3$.	[2]

4024/02/M/J/07

8 Answer the whole of this question on a sheet of graph paper.

Adam stood on a slope, 15 m from the bottom. He rolled a heavy ball directly up the slope. After *t* seconds the ball was *y* metres from the bottom of the slope. The table below gives some values of *t* and the corresponding values of *y*.

t	0	1	2	2.5	3	3.5	4	4.5	5	5.5
у	15	22	25	25	24	22	19	15	10	4

(a) Using a scale of 2 cm to represent 1 unit, draw a horizontal *t*-axis for $0 \le t \le 6$.

Using a scale of 2 cm to represent 5 units, draw a vertical *y*-axis for $0 \le y \le 30$.

On your axes, plot the points giv	ven in the table and jo	bin them with a smooth curve.	[3]
-----------------------------------	-------------------------	-------------------------------	-----

- (b) Extend the curve to find the value of *t* when the ball reached the bottom of the slope. [1]
- (c) (i) By drawing a tangent, find the gradient of the curve when t = 3.5. [2]
 - (ii) State briefly what this gradient represents.
- (d) Immediately after he rolled the ball, Adam ran down the slope at a constant speed of 1.5 m/s.
 - (i) Write down the distance of Adam from the bottom of the slope when

(a)	t = 0,	
(b)	t = 4.	[2]

[1]

- (ii) On the same axes, draw the graph that represents the distance of Adam from the bottom of the slope for $0 \le t \le 6$. [2]
- (iii) Hence find the distance of Adam from the bottom of the slope when the ball passed him. [1]

4024/02/M/J/07

Diagram I

In Diagram I, the point D lies on AC and N is the foot of the perpendicular from C to BD. AB = 61 m, AD = 30 m and DC = 45 m.Angle $BAC = 41^{\circ}$.

(a)	Calculate <i>BD</i> .	[4]
(b)	Show that, correct to the nearest square metre, the area of triangle BDA is 600 m^2 .	[2]
(c)	Explain why $\frac{\text{area of } \Delta BCD}{\text{area of } \Delta BDA} = \frac{3}{2}$.	[1]
(d)	Calculate the area of triangle <i>BCD</i> .	[1]

(e) Hence calculate *CN*.

(**f**)

Diagram II

[2]

4024/02/M/J/07

[Turn over

[2]

10	It is given that $y = \frac{3x^2 - 12}{5}$.						
	(a)	Find <i>y</i> when $x = -3$.	[1]				
	(b)	Find the values of x when $y = 0$.	[2]				
	(c)	For values of x in the range $-3 \le x \le 2$, write down					
		(i) the largest value of y,	[1]				
		(ii) the smallest value of y.	[1]				
	(d)	Express <i>x</i> in terms of <i>y</i> .	[2]				
	(e)	It is also given that $y = \frac{t-3}{2}$ when $x = t$.					
		(i) Show that <i>t</i> satisfies the equation $6t^2 - 5t - 9 = 0$.	[1]				
		(ii) Solve the equation $6t^2 - 5t - 9 = 0$, giving each answer correct to two significant figures .	[4]				

4024/02/M/J/07

- 11 (a) The diagrams show triangles A, B, C and D.
 - The single transformation P maps (i) ΔA onto ΔB .

Describe, fully, the transformation P.

(ii) The single transformation Q maps ΔA onto ΔC .

Describe, fully, the transformation Q.

(iii) The reflection R maps ΔA onto ΔD .

> Find the matrix that represents the reflection R.

(b) The diagram shows the points *E* (1, 3), *F* (2, 3) and *G* (-1, 3). An enlargement, centre E, maps F onto G.

(i)

(ii)

(c) **M** =

(i)

(ii)

(iii)

-1 -2

4024/02/M/J/07

www.xtremepapers.net

y

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

4024/02/M/J/07

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

	CANDIDATE NAME		
	CENTRE NUMBER	CANDIDATE NUMBER	
*			
N	MATHEMATICS	S (SYLLABUS D)	4024/01
б л	Paper 1		May/June 2007
4			2 hours
8	Candidates ans	wer on the Question Paper.	
5 5 5	Additional Mate	rials: Geometrical instruments	
,			

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES.

Answer **all** questions.

If working is needed for any question it must be shown in the space below that question. Omission of essential working will result in loss of marks.

NEITHER ELECTRONIC CALCULATORS NOR MATHEMATICAL TABLES MAY BE USED IN THIS PAPER.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 80.

For Examiner's Use

This document consists of **15** printed pages and **1** blank page.

UNIVERSITY of CAMBRIDGE International Examinations

[Turn over

2

4024/01/M/J/07

r 1er's		3	Exa
² 4	(a)	A car decelerates uniformly from 20 m/s to 5 m/s in 25 seconds. Calculate the retardation.	
	(b)	Express 20 metres per second in kilometres per hour.	
		Answer (a) m/s^2 [1]	
		(b) km/h [1]	
5	(a)	Write the following in order of size, starting with the smallest.	
		$\frac{66}{100}$ 0.6 0.67 $\frac{666}{1000}$	
		Answer (a), ,, ,, [1] smallest	
	(b)	The distance of Saturn from the Sun is 1507 million kilometres. Express 1507 million in standard form.	
_		Answer (b)[1]	
6	(a)	Express 154 as the product of its prime factors.	
	(b)	Find the lowest common multiple of 154 and 49.	
		Answer (a) [1]	

r ner's	4	Ex
7	In the quadrilateral <i>ABCD</i> , $\hat{A} = x^{\circ}$, $\hat{B} = 2x^{\circ}$, $\hat{C} = 3x^{\circ}$ and $\hat{D} = 4x^{\circ}$.	
	(a) Find x .	
	(b) Explain why AB is parallel to DC .	
	Answer (a) $x =$ [1]	
	<i>(b)</i> [1]	
8	On the grid in the answer space, $\overrightarrow{OP} = \mathbf{p}$ and $\overrightarrow{OQ} = \mathbf{q}$.	
	(a) Given that $\overrightarrow{OR} = \mathbf{p} - \mathbf{q}$, mark the point <i>R</i> clearly on the grid.	
	(b) The point <i>S</i> is shown on the grid.	
	Given that $\overrightarrow{OS} = \mathbf{q} + h\mathbf{p}$, find <i>h</i> .	
	Answer (a)	
	S Q q	
	(b) k = [1]	
	(<i>v</i>) <i>n</i> –[1]	

www.xtremepapers.

[Turn over

1		7
13	(a)	Given that $2y = 3^x$, find x when $y = 40\frac{1}{2}$.
		Answer (a) $x =$
	(b)	The points, $A(0, \frac{1}{2})$ and $B(2, 4\frac{1}{2})$, lie on the curve as shown in the diagram.
		5 ^y
		4
		3/ / /
		2
		0 - 1 - 2 - 3 x
		(i) Calculate the gradient of the straight line <i>AB</i> .
		(ii) Using the diagram, estimate the value of x at which the gradient of the curve is equal to the gradient of the straight line AB .
		Answer (b)(i)
		(ii) <i>x</i> =[1]
JCLES 20)7	4024/01/M/J/07 [Turn o

	δ
14	In the diagram, <i>ABCD</i> is a diameter of the circle centre <i>P</i> . AB = BC = CD = 2x centimetres.
	(a) Find an expression, in terms of x and π , for the circumference of this circle.
	(b) The perimeter of the shaded region consists of two semicircles whose diameters are AB and CD , and two semicircles whose diameters are AC and BD .
	Find an expression, in terms of x and π , for the area of the shaded region.
	Answer (a)cm [1]
	(b) cm^2 [2]
15	In the diagram, <i>BCDE</i> is a trapezium, and the sides <i>CD</i> and <i>BE</i> are produced to meet at <i>A</i> . CB = 12 cm, DE = 9 cm and the perpendicular distance from <i>D</i> to <i>CB</i> is 4 cm. Calculate
15	In the diagram, <i>BCDE</i> is a trapezium, and the sides <i>CD</i> and <i>BE</i> are produced to meet at <i>A</i> . CB = 12 cm, $DE = 9 cm$ and the perpendicular distance from <i>D</i> to <i>CB</i> is 4 cm. Calculate (a) the area of <i>BCDE</i> , (b) the area of <i>BCDE</i> ,
15	In the diagram, <i>BCDE</i> is a trapezium, and the sides <i>CD</i> and <i>BE</i> are produced to meet at <i>A</i> . <i>CB</i> = 12 cm, <i>DE</i> = 9 cm and the perpendicular distance from <i>D</i> to <i>CB</i> is 4 cm. Calculate (a) the area of <i>BCDE</i> , (b) the perpendicular distance from <i>A</i> to <i>CB</i> . $D = \frac{9}{4}$
15	In the diagram, <i>BCDE</i> is a trapezium, and the sides <i>CD</i> and <i>BE</i> are produced to meet at <i>A</i> . <i>CB</i> = 12 cm, <i>DE</i> = 9 cm and the perpendicular distance from <i>D</i> to <i>CB</i> is 4 cm. Calculate (a) the area of <i>BCDE</i> , (b) the perpendicular distance from <i>A</i> to <i>CB</i> . $D = \frac{9}{4} = \frac{1}{4} = \frac{1}{2} = \frac$
15	In the diagram, <i>BCDE</i> is a trapezium, and the sides <i>CD</i> and <i>BE</i> are produced to meet at <i>A</i> . <i>CB</i> = 12 cm, <i>DE</i> = 9 cm and the perpendicular distance from <i>D</i> to <i>CB</i> is 4 cm. Calculate (a) the area of <i>BCDE</i> , (b) the perpendicular distance from <i>A</i> to <i>CB</i> . $D = \frac{9}{4} = \frac{1}{2} = \frac$
15	In the diagram, <i>BCDE</i> is a trapezium, and the sides <i>CD</i> and <i>BE</i> are produced to meet at <i>A</i> . <i>CB</i> = 12 cm, <i>DE</i> = 9 cm and the perpendicular distance from <i>D</i> to <i>CB</i> is 4 cm. Calculate (a) the area of <i>BCDE</i> , (b) the perpendicular distance from <i>A</i> to <i>CB</i> . $D = \frac{9}{4} = \frac{1}{4} = \frac{1}{12} = $
15	In the diagram, <i>BCDE</i> is a trapezium, and the sides <i>CD</i> and <i>BE</i> are produced to meet at <i>A</i> . <i>CB</i> = 12 cm, <i>DE</i> = 9 cm and the perpendicular distance from <i>D</i> to <i>CB</i> is 4 cm. Calculate (a) the area of <i>BCDE</i> , (b) the perpendicular distance from <i>A</i> to <i>CB</i> . $D = \frac{9}{4} = \frac{1}{2} = \frac$

4024/01/M/J/07

For Examiner's	10	For Examiner's
Use	19	Use
	The diagram shows a circle centre <i>C</i> of radius 5cm and a circle centre <i>A</i> of radius 3cm	
	The diagram shows a check, centre C, of radius Sem, and a check, centre A, of radius Sem. The circles intersect at X and Y. B is a point such that $AB = 5 \text{ cm}$ and $BC = 3 \text{ cm}$.	
	(a) Show that thangles ADC and CTA are congruent. Answer (a)	
	[1] (c) State the name of the special quadrilateral <i>AYCX</i> .	
	Answer (c)	

4024/01/M/J/07

20 The plan of a field has a scale of 1 cm to 5 metres.

(a) Express this scale in the form 1 : *n*.

Answer (a)[1]

(b) The plan was made by measuring angles from two points, A and B, 50 m apart. The line AB is drawn to scale in the answer space below.

(i) A tree is at the point *T* in the field. $B\hat{A}T = 35^{\circ}$ and $A\hat{B}T = 70^{\circ}$.

Locate and label *T* on the plan.

- (ii) Given that A is due west of B, state the bearing of T from B.
- (iii) By making an appropriate measurement, find the actual distance, in metres, of the tree from B.

Answer (b)(i)

Ν

A B	[1]

For For 12 Examiner's Examiner's Use Use 21 Factorise (a) $2x^2 - 7x - 15$, **(b)** 2yt - 8ys - zt + 4zs. Answer (a)[2] *(b)*[2] (a) Solve 22 (i) 9-k < 7, (ii) $\frac{5}{2t} = \frac{1}{12}$. x + y = 29,4x = 95 - 2y.(b) Solve the simultaneous equations Answer (a) (i)[1] (ii) *t* =[1] (*b*) $x = \dots$ [3]

4024/01/M/J/07

23 (a)

	sin	cos
30°	0.5	0.87
60°	0.87	0.5

13

For Examiner's Use

Using as much information in the table as necessary, evaluate 2sin150°.

Answer (a).....[1]

(b)

In the triangle ABC, $A\hat{B}C = 90^\circ$, AB = 3x cm, BC = (x + 1) cm and AC = (3x + 1) cm.

x+1

3x

B

3*x*+1

(i) Form an equation in x and show that it reduces to $x^2 - 4x = 0$.

D

24 (a) Evaluate $\begin{pmatrix} 12 \\ 4 \\ 6 \end{pmatrix} - 3 \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}$.

Answer (a) (1)

(b) A business makes toy buses and toy lorries. The following table is used in calculating the cost of making each toy.

	Labour (hours)	Wood (blocks)	Paint (tins)
Bus	2	3	1
Lorry	1	W	2

Labour costs \$10 per hour, wood costs \$1 per block and paint costs \$p per tin.

The information above can be summarised in the matrices A and B,

where
$$\mathbf{A} = \begin{pmatrix} 2 & 3 & 1 \\ 1 & w & 2 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 10 \\ 1 \\ p \end{pmatrix}$.
(i) Given that $\mathbf{AB} = \begin{pmatrix} 28 \\ 24 \end{pmatrix}$, find
(a) p ,
(b) w .
(ii) Evaluate $(100 \ 200) \begin{pmatrix} 28 \\ 24 \end{pmatrix}$.
(iii) Explain what your answer to (ii) represents.
Answer

4024/01/M/J/07

<u>www.xtremepapers.net</u>

25 The heights of 40 children were measured.

The results are summarised in the table below.

Height (<i>h</i> cm)	$105 < h \le 115$	$115 < h \le 125$	$125 < h \le 135$	$135 < h \le 145$
Frequency	5	10	20	5

(a) (i) Identify the modal class.

(ii) Calculate an estimate of the mean height.

- Answer (a)(i)[1]
 - (ii)cm [3]
- (b) The cumulative frequency curve representing this information is shown below.

4024/01/M/J/07

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

4024/01/M/J/07

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the May/June 2007 question paper

4024 MATHEMATICS

4024/02

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Type of mark

In general:

- (i) <u>'M' marks</u> are awarded for any correct method applied to the appropriate numbers, even though a numerical error may be involved.
 - a) Once earned they cannot be lost.
 - b) They are earned for a numerical statement which is usually explicit as regards the quantity to be found.
 - c) e.g. the use of a wrong formula, wrong trigonometrical ratio or misapplication of 'Pythagoras' is wrong method.
- (ii) <u>'A' marks</u> are awarded for a numerically correct stage, for a correct result or for an answer lying within a specified range.
 - a) They are given only if the relevant 'M' mark has been earned.
 - b) They are not given for a correct result following an error in working.
- (iii) <u>'B' marks</u> are independent of method and are usually awarded for an accurate result or statement.
- (iv) In graph or drawing questions some marks may carry a letter (e.g. G4 for drawing the graph, Q1 for quality, L3 for drawing loci) to make their identification easier.

Abbreviations which may be used in mark schemes or in comments on scripts:

Answer given
Benefit of doubt
Correct answer only
(In) dependent
Extra question
Follow through
Further error made
Ignore subsequent working
Misread
Or equivalent
Omission of essential working
Premature approximation
Special case
Seen or implied
See other solution
Trial and error
Without working (i.e. answer only seen)
Without wrong working
Condone the omission of the £ or degree sign etc.

Page 3	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – May/June 2007	4024	02

1	(a)	(i)	(a)	(\$)9.60	B1		96c or 1.20	BO	9.60	B1
			(b)	(\$) 23.20	B1		12.40	B 1	40	B1
		(ii)		$\frac{16-12}{10}$ or $\frac{4}{10}$ or 5	B1		$\frac{16-1.2}{0.6}$	B1		
				0.8 0.8 0.8 15	B1	4	0.8 28.5	B1	12	B 1
									,	
	(b)	(i)		13(h) 16(m)	B1					
		(ii)		$10\ 00 + \frac{22\ 56 - 10\ 00}{2}$ or $\frac{10\ 00 + 22\ 56}{2}$	M1					
				16 28	A1	3	Allow 16 h 28	min		
	(c)			'figs 15 × figs 2' OR 'figs 3' 4800	B1 B1	2				
2	(a)			1.5	M1		All M and A	mark	s available f	or any
				$\cos DBL = \frac{1.9}{1.9}$ o.e. 37.86 - 37.9	Δ1	2	COMPLETE a	altern	ative method.	
				51.00 51.5	AI	2				
	(b)			$\tan 68 = \frac{1.5}{4E}$ o.e.	M1		condone $\frac{\sin 2}{4E}$	$\frac{2}{1} = \frac{s}{1}$	$\frac{\sin 68}{1.5}$ for M1	
				AL 0.6 – 0.61	A1	2	AL		1.3	
	(c)			$\frac{1.3}{1.3} = \frac{1.9}{1.3}$ o.e.	M1					
				$ \sin D \sin 76 \\ \cdot = 1.3 \sin 76 $	M1		dep on first M	1		
				$\sin D = \frac{1.9}{1.9}$	4.1	2	•			
				41.39 - 42	AI	3				
3	(a)			$\frac{11}{18a}$	B2	2	SC1 for any or figs $^{11}/_{18}$ in	equiv final	. unsimplified answer.	d form
				104						
	(b)			$b^2 - 3b + 8$ (final answer)	B2	2	SC1 for 2 cc final answer (y	ollecto witho	ed terms corr ut b^3 , b^4)	rect in
							OR: for a corre	ect for	m without bra	ckets.
	(c)	(i)		127	B1					
		(ii)	(a)	132	B 1					
			(b)	$n^3 + 2 + n$ o.e.	B1	3	e.g. accept n^3	+ 3 +	<i>n</i> – 1.	
	(d)	(i)		(y =) x - 38 o.e.	B1		e.g. accept <i>x</i> +	22 –	60.	
		(ii)	(a)	x + 60 = 3 (x - 38) \$\$	B1 B1		$J_x + 60 = 3 \times$	their	(x-38)	
			(b)	196 $\int \frac{\text{strict}}{100} \int \frac{1}{100} \int $	B1	4	$J 2 \times$ their 87	+ 22		

Page 4				Mark Sche	Syllabus	Paper			
				GCE O LEVEL – Ma	y/June 20	07		4024	02
			(0)		D1				
4	(a)	(1)	60		BI			0.	
		(ii)	9:4	4	B 1		Accept 4	$4:9 \text{ Not } \frac{9}{4} \text{ or }$	2.25 : 1
		(iii)	165		B2		SC1 for	$\frac{44 \times 360}{100}$	
						4		96 44 × 100	
						-	or	$\frac{44 \times 100}{26 \text{ to } 27}$	
	(b)	(i)	DÂ	C = 33	B 1				
		(ii)	לת	$\tilde{C} = 24$	B1				
		(;;;)			D1				
		(III)	AL	DC = 57	DI				
		(iv)	AÂ	C = 123 J	B1	4	J 180 -	their 57	
5	(a)	(i)	Мо	de = 3	B1		If 6 is m intended	nentioned 3 must l answer	be the clearly
		(ii)	Ме	dian = 4	B1				
		(iii)	(2)	$(2) + (3 \times 6) + (115)$	M1				
		(11)	4.6	(113)	A1	4			
	(b)	(i)	9/2	5	B1		Accept 3	36% or 0.36.	
		(**)	1	5	D1			1000/ NT / ²⁵ /	17
		(11)	1		BI	2	Accept	$100\%; \text{ Not } \frac{25}{25} \text{ o}$	r '/ ₁
	(c)	(i)	1		B1				
			50						
		(ii)	2	5	M1		10	1 · 1· N/T	
			25	$\times \overline{24}$			$\overline{600}$ or	better implies MI	
			$\frac{1}{20}$		A1	3			
			30						
6	(a)		Rot	ational (symmetry)	B1		-1 if line	e symmetry stated	l or implied.
			Orc	ler 2, centre (3, 0) o.e.	B 1	2			
	(b)	(i)		(0)	B1				
	(-)	()	CL	$\mathbf{P} = \begin{bmatrix} 0 \\ 8 \end{bmatrix}$					
		(**)			D1				
		(11)	\overline{OC}	$\vec{L} = \begin{pmatrix} 6 \\ 4 \end{pmatrix}$	BI				
				(-4)					
		(iii)	\overline{DC}	$\dot{D} = \begin{pmatrix} -6 \\ -4 \end{pmatrix}$	B1	3			
	(c)		Isos	sceles	B1	1			
	(d)		(3,	-2)	B1	2			
			Sne	5 a 1	DI	2			

Page 5				Mark Schei	me	Syllabus Paper			
				GCE O LEVEL – Ma	y/June 20	07		4024	02
7	(9)	(i)	20	\times 7 \times 4	M1		560 imn	lies M1	
,	(a)	(1)	20 -		M1		327	$r 98.2 \text{imply } \mathbf{M}$	1
			(3×	$(\frac{1}{2}) \times \frac{4}{2} \times \pi \times 2.5^3$	1711		52.70	<i>n</i> 90.2 Imply W	1
				2 3		•			
			461	$.7 \rightarrow 462 \text{ (cm}^3\text{)}$	Al	3			
		<i>(</i> 1)	0.1.6	3	D 4				
		(11)	216	(cm ²)	BI	I			
		(22)		1	N/T1		20.2		
		(III) (a)	(3×	$(1)^{1} \times 4 \times \pi \times 2.5^{2}$	IVII		39.21	inplies MI	
			Ì	2					
			117	$1.7 \rightarrow 118 \text{ (cm}^2\text{)}$	A1	2			
			,	```			10.6		
		(b)	(20	$(\times 7 - 3 \times)\pi \times 2.5^2$	M1		19.6 or 58.9 implies M1		
			81 -	$\rightarrow 81.2 \text{ (cm}^2)$	A1	2			
	(b)	(i)		1^{3} 1^{3} $(6)^{3}$	B 1				
			V =	$=kx^3 \Rightarrow k = \frac{1}{3}$ or $\left(\frac{1}{12}\right)$ o.e. seen					
			71	5^{-12}	D1	2			
			/1 -	\rightarrow /2 (clii)	DI	2			
		(ii)							
		(11)	15	$7 \rightarrow 16.4 \text{ (cm)}$	B2	2			
			10.		D2	-			
8	(a)		Cor	rect scales	S1				
	()		10 0	correct plots (within 1 mm)	P1				
			Sm	ooth curve (not grossly thick)	C1	3			
	(b)		5.7	to 5.9	T1	1	Must be	clearly identified	if written on
							the grap	h.	
					~ 1				
	(c)	(1)	Neg	gative value } final answer	GI		Accept	$\frac{a}{-}$ if. a. b integers	
			4 to	6 } finite and ver	GI		p.	b	
		(ii)	Spe	ed or velocity.	G1	3	Accept '	rate of change of	distance with
							time'.		
	(-I)		1.7		D1				
	(a)	(I) (a)	15 ((m)	DI				
		(h)	0 (*	n)	D1				
		(U)) e	11 <i>)</i>	D I				
		(ii)	Stre	night line -ve slone	L.1				
		(**)	Thr	rough (0, 15) and (6, 6)	L1		(6.6) w	thin 2 mm	
			1111	ough (0, 1 <i>0)</i> und (0, 0)			(0, 0) W		
		(iii)	7 –	7.4	B 1	5	Must be	clearly identified	if written on
		1 9				-	the gran	h.	
							<u> </u>		

Page 6		Mark Sche	Syllabus	Paper			
		GCE O LEVEL – Ma		4024	02		
9 (a)	Att BD = 1 BD	empt at cosine rule ${}^{2} = 61^{2} + 30^{2} - 2.30.61 \cos 41$ 850 - 1860 = 43.1 to 43.12	M1 M1 A1 A1	4	e.g. 61^2 BD can	$+30^{2} \pm (2).30.61$ be implied.	cos 41
(b)	$\frac{1}{2}$ ×	$461 \times 30 \times \sin 41 (= 600.2)$	B2		A.G.		
(c)	Sar (or	ne height \Rightarrow 45 : 30 common vortex)	B1		A.G. Accept u	use of $1/_2 ab \sin C$.	
(d)	900	$0 \rightarrow 901 \ (\mathrm{cm}^2)$	B1	4			
(e)	900 41.	$0 = \frac{1}{2} \times 43.1 \times CN$ 7 - 41.9	M1 A1	2	J their 9	$P00 = \frac{1}{2}$ their <i>BD</i>	\times CN
(f)	sin 21.	$e = \frac{15}{41.8}$ J 0° - 21.1°	M1 A1	2	J sin e = SC1 for	$=\frac{15}{\text{their}CN}$ final answer 68.9	$^{\circ} \rightarrow 69^{\circ}$
10 (a)	3		B1				
(b)	2 0	r –2	B1+B1	3			
(c) (i)	3		B1				
(ii)	$-\frac{1}{3}$	$\frac{2}{5}$ o.e.	B1	2			
(d)	$3x^2$	=5y + 12	M1		NB x^2 =	$=\frac{5}{3}y+4$ or $\frac{\sqrt{5y+3}}{3}$	score M1
	<i>x</i> =	$=\sqrt{\frac{5y+12}{3}}$ o.e.	A1	2			
(e) (i)	$\frac{t-2}{2}$	$\frac{3}{5} = \frac{3t^2 - 12}{5}$ o.e.			method	must be clear and	accurate
	\Rightarrow \Rightarrow	$5(t-3) = 2(3t^2 - 12)$ Given result	B1	1	must rea	ch $6t^2 - 5t - 9$ (=)	0)
(ii)	For	numerical $\frac{p+/-\sqrt{q}}{r}$			For 'con	npleting the square	e'
	<i>p</i> =	+5 and r = 12	B1		$\left(t-\frac{5}{12}\right)$	² B1 , $\frac{241}{144}$, B	t
	<i>q</i> = 1.7	241 of $\sqrt{q} = 15.5$ (s.o.i.) or -0.88	B1 B1+B1	4	SC1 for or for an	1.7 – 1.72 AND – 1y 2 ans to 2 sig fig	0.88 to - 0.87gs

02
U 2
30 BO
30 BO
3

MARK SCHEME for the May/June 2007 question paper

4024 MATHEMATICS

4024/01

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2			Mark Scher	Syllabus	Paper		
		GCE O LE	EVEL – May	//Jur	ne 2007	4024	01
1	(a) 15 ¹ / ₂ or	15.5	1		Not 31/2		
	(b) (0).175		1	2			
2	(a) $\frac{11}{28}$		1		If answer decimal accept fraction in	in range 0.39 to (working).40,
	(b) 10		1	2			
3	(<i>d</i> =) 12 (imp	lied by 8/12)	1		Accept answer re After 0+0.allow M	versed without ev A1 for $\frac{8 \times 3}{2}$ or $\frac{39}{2}$	idence $\frac{9 \times 2}{3}$ seen M1
	(<i>n</i> =) 26 (imp	lied by 26/39)	1	2			
4	(a) (0).6 or <u>3</u> 5	<u>k</u> (m/s²) k	1		Accept – 0.6 etc		
	(b) 72 (km/h)	1	2			
5	(a) $\frac{66}{100} \frac{666}{1000}$ or 0.6 $\frac{66}{100} \frac{6}{100}$	$\frac{6}{5}$ 0.6r 0.67 $\frac{666}{000}$ 0.67	1		Accept any equiv	alents	
	(b) 1.507 × 1	0 ⁹ cao	1	2			
6	(a) $2 \times 7 \times 1$	1 (× 1)	1		Accept without ">	<" if clear (e.g. 2,	7, 11)
	(b) 1078 ca	0	1	2			
				12			12
7	(a) 36		1		Accept 36°		
	(b) $B + C = 1$	80 or $A + D = 180$	1	2	Accept reference supplementary	to interior or allie	ed angles

Page 3			Mark Scheme	Syllabus Pape		
		GCE O L	EVEL – May/June	e 2007	4024	01
8	(a) R corr	ectly marked	1	2 squares "below"	Р	
	(b) $-\frac{3}{4}$ or	- (0).75	1 2			
9	(a) <i>y</i> mark	red in correct region	1	Within $A \cap B'$. N	lot just shading	
	(b) (i) 6		1	Without brackets of	or braces	
	(ii) 4	, 5	1 3	Ignore extra braces	S	
10	(a) (-1,	3)	1			
	(b) $y < 3$ $y > \frac{1}{2}$	oe x oe	1 1 3	Accept \leq for $<$ etc Both reversed,afte	in both cases $r 0 + 0$ allow C1	
	-		10			10
11	(a) (i) p	= 40	1			
	(ii) q	= 18	1	Accept answer(s)	reversed without	evidence
	(b) Rectar	gle, width 30, height 0.4	1 3			
12	(a) 1		1			
	(b) 32		1	Accept ± 32 , but no	ot – 32 alone	
	(c) 25		1 3			
13	(a) 4		1			
	(b) (i) 2		1	Accept 2/1 or 4/2		
	(ii) 1.	1 to 1.3	1 3	Ignore any value o	fy	
			9			9

Page 4		ge 4	Mark		Syllabus	Paper		
	GCE O LEVEL				y/Jur	ne 2007	4024	01
14	(a)	6πx (cm)	only	1		Accept numerica	l π in both parts	
	(b)	$3\pi x^2$ (cm (e.g. $4\pi x^2$	²) or unsimplified equiv - πx^2)	2	3	$3\pi x^2/2$ or unsim or area larger (se or area smaller (se	nplified equiv C1 mi)circle = $(\frac{1}{2})\pi(2$ semi)circle = $(\frac{1}{2})\pi$	$(x)^{2}$ M1 x^{2} M1
15	(a)	42 (cm ²)		1				
	(b)	16 (cm)		2	3	Use of similar tri or use their BCD	angles e.g. $\frac{h-4}{h} =$ PE = $\frac{1}{2} 12(4+h) -$	$=\frac{9}{12}$ M1 $\frac{1}{2}9h$
16	(a)	2/3		1		Accept 0.666 or 1	better	
	(b)	$\frac{3x+4}{5}$	asc	2	3	ax + b with $a = 3Use of letter other$	$\sqrt{5} \ b \neq 0$ or $a \neq 0 \ b$ or than x, give - 1 if	=4/5 seen M1 f possible
17	(a)	(<i>DCB</i> =)	140	1		Not reflex angle		
	(b)	(<i>DCF</i> =)	105 or $\{245 - \text{their (a)}\} $	1		No $\sqrt{122.5}$ the	nen 122.5	
	(c)	(<i>EFC</i> =)	75 or $\{180 - \text{their (b)}\} $	1	3	SC 155, 90 , 90 s	scores 0, 1 , 0	
18	(a)	(\$) 14 00	0	1				
	(b)	25 (%)		2	3	Answer 75 or 12. figs $\frac{4.20 - 3.15}{4.20}$	5 C1 oe seen M1	
					15			15

Pac		ige 5			Mark Sche	Svllabus	Paper		
			GCE O L	EVEL – Ma	4024	01			
19	(a)	AY CY AC Tria	= BC $= AB$ commangles	(=3) (=5) non congruent	2		Conclusion must but SSS not need are quoted Two correct pair	be stated ed unless extra fac rs of facts stated	ets C1
	(b)	Are (Ad <i>AY</i> (a AYC d AC CX = A	C = area ABC X) ABCX	1		Use of "right ang	tle" scores 0	
	(c)	Kite	e		1	4			
20	(a)	1 :	500		1		Accept 500		
	(b)	(i)	Tria 35° =	ngle drawn with angle $\pm 2^{\circ}$ and $70^{\circ} \pm 2^{\circ}$	es 1				
		(ii)	340	or 200	1		Accept $340^\circ \pm 2^\circ$	$^{\circ}$ or $200^{\circ} \pm 2^{\circ}$	
		(iii)	28 to	o 31 (m)	1	4	dep on scoring 1	in (b)(i)	
						8			8
21	Con	ndone	e miss t) in a	ing outside brackets, ' nswer space, give mar	'= 0" and use ks if factors	e of w seen	rong letter if clear.	If only "solutions	" (even
	(a)	(2 <i>x</i>	+ 3)(x	(x – 5) oe	2		$(2x-3)(x+5)$ or $\frac{7\pm\sqrt{169}}{4}$ or 1	C1 better seen M1	
	(b)	(2 <i>y</i>	-z)(t	– 4 <i>s</i>) oe	2	4	Complete correct such as $2yt - 8ys$	t extraction of one $-z(t-4s)$	factor M1
22	(a)	(i)	k > 2	2	1		Accept $2 < k$ No	ot just 2	
		(ii)	(<i>t</i> =)	30	1				
	(b)	<i>x</i> = <i>y</i> =	18½ (10½ (or 18.5 or 10.5	3	5	$x = \frac{37k}{2k} \text{ and } y =$ or one correct with or one correct int working C1 or correct method condoning 1 arith	$\frac{21k}{2k}$ seen C2 ith supporting wo approper answer wit d to eliminate <i>x</i> or ametic slip	rking C2 th supporting y, M1

Page 6			Mark So	Syllabus	Paper				
			GCE O LEVEL –	ne 2007	4024	01			
23	(a) 1				1				
	(b) (i	i)	<i>x</i> ² – 4	x = 0 correctly obtained AG	2		$(3x + 1)^2 = (x + 1)^2$ [Condone $3x^2$ for	$(3x)^{2} + (3x)^{2}$ oe seen (3x)^{2} for M1 etc]	n M1
	(ii	i)	(<i>x</i> =)	4	1		Ignore $x = 0$		
	(iii	i)	$-\frac{5}{13}$	or $-\frac{\text{their (ii)}+1}{3 \text{ their (ii)}+1} \sqrt{3}$	1	5	If answer decima	l look back for fra	ction
						14			14
24	(a)	$\begin{pmatrix} 3 \\ 7 \\ 0 \end{pmatrix}$			1				
	(b) (i	i)	(a) ((b) ((p =) 5 $(w =) 4 \text{ or } 14 - 2 \times \text{their } p = \sqrt{2}$	1 1		Only allow \sqrt{if} the function of the second seco	heir $w > 0$	
	(ii	i)	7600		1		Ignore lack of bra	aces	
	(iii	i)	Total and (2	cost of making (100) buses 200) lorries	1	5	Accept reasonabl cost (and toys)	e equivalents invo	lving
25	(a) (i	i)	125 <	$h \le 135$ implied	1		Not just 20		
	(ii	i)	126.2	5, 126.2, 126.3, 126 or 126 ¹ / ₄	3		or Correct method $\frac{5 \times 110 + 10 \times 120}{5 + 10}$ condoning one en or consistent use or $5 \times 110 + 10 \times 10^{-1}$	d such as $2+20 \times 130 + 5 \times 14$ 2+20+5 ror or omission of wrong <i>h</i> in abo $(120+20 \times 130 + 10)$	$\frac{0}{10}$ M2 ve M1 5 × 140 M1
	(b) (i	i)	11 (c	m)	2		121 or 132 used		
	(ii	i)	16		1	7			
						12			12

UNIVERSITY (Gene	OF CAMBRIDGE INTERNATIO	DNAL EXAMINATIONS
MATHEMATICS (S	SYLLABUS D)	4024/02
Paper 2		May/June 2006
Additional Materials:	Answer Booklet/Paper Electronic calculator Geometrical instruments Graph paper (1 sheet) Mathematical tables (optional)	2 hours 30 minutes

READ THESE INSTRUCTIONS FIRST

Write your answers and working on the separate Answer Booklet/Paper provided. Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A

Answer **all** questions.

Section B Answer any four questions.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

Show all your working on the same page as the rest of the answer.

Omission of essential working will result in loss of marks.

The total of the marks for this paper is 100.

You are expected to use an electronic calculator to evaluate explicit numerical expressions. You may use mathematical tables as well if necessary.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

This document consists of 11 printed pages and 1 blank page.

UNIVERSITY of CAMBRIDGE

[Turn over

Section A [52 marks]

Answer all questions in this section.

1	(a)	Solve the equation 3	$3x^2 - 4x - 5 = 0,$	giving your answers correct to two decimal j	places. [4	1
---	------------	----------------------	----------------------	--	------------	---

- (b) Remove the brackets and simplify $(3a 4b)^2$.
- (c) Factorise completely 12 + 8t 3y 2ty.
- 2 (a) A solid cuboid measures 7 cm by 5 cm by 3 cm.

(i) Calculate the total surface area of the cuboid.

- (ii) A cube has the same volume as the cuboid. Calculate the length of an edge of this cube.
- (b) [The volume of a cone is $\frac{1}{3} \times$ base area \times height.] [The area of the curved surface of a cone of radius *r* and slant height *l* is πrl .]

A solid cone has a base radius of 8 cm and a height of 15 cm.

Calculate

- (i) its volume,
- (ii) its slant height,
- (iii) its curved surface area,
- (iv) its total surface area.

[2]

[2]

[2]

[2]

[2]

[2]

[1]

4024/02/M/J/06

3 (a) In the diagram, the points *A*, *B*, *C* and *D* lie on a circle, centre *O*.

$$DOB = 124^{\circ}$$
 and $CDO = 36^{\circ}$.

Calculate

- (i) $D\hat{C}B$,
- (ii) DAB,
- (iii) ODB,
- (iv) $C \stackrel{\wedge}{B} O$.
- (b) The diagram shows a circle, centre *O*, with the sector *POQ* shaded.

Given that $POQ = 140^\circ$ and the radius
of the circle is 8 cm, calculate

(i) the area of the shaded region, [2]
(ii) the total perimeter of the unshaded region. [3]

4024/02/M/J/06

[Turn over

[1]

[1]

[1]

[1]

4

4 (a) These are the prices for a ride in an amusement park.

Adult	\$3.60
Child	\$2.25

(i) A family of two adults and three children went on the ride. They paid with a \$20 note.

Calculate the change they received.	[1]
	L

[1]

[2]

- (ii) Express \$2.25 as a percentage of \$3.60.
- (b) Diagram I represents part of the framework of the ride.

The points *A*, *B*, *C*, *D*, *E* and *F* are on the framework. The points *H*, *C*, *G*, *E* and *F* lie on a horizontal line. The lines *BH* and *DG* are vertical.

 $BC = 80 \text{ m}, HC = 60 \text{ m}, DG = 40 \text{ m}, GE = 35 \text{ m} \text{ and } D\hat{C}G = 32^{\circ}.$

Diagram I

Calculate

(i)	$\stackrel{\wedge}{HCB}$,		[2]

(iii) the angle of depression of E from D.

4024/02/M/J/06

Diagram II

Diagram II shows part of the ride.

The carriage that carried the family was 4.6 m long. It was travelling at a constant speed of 15 m/s as it passed the point *F*.

- (i) Calculate, correct to the nearest hundredth of a second, the time taken for the carriage to pass the point F. [2]
- (ii) Express 15 m/s in kilometres per hour.

[1]

5

C	0	0	C)		0		0		0	
0	0	0	0	0	C)	0		0		0
0	0	0	0	0	C)	0		0		0
C	C	0	C)		0		0		0	
Pattern 1		Pa	attern	2			Pa	tter	n 3		

Counters are used to make patterns as shown above. Pattern 1 contains 6 counters. The numbers of counters needed to make each pattern form a sequence.

(a)	Write down the first four terms of this sequence.	[1]
(b)	The number of counters needed to make Pattern <i>n</i> is $An + 2$. Find the value of <i>A</i> .	[1]
(c)	Mary has 500 counters. She uses as many of these counters as she can to make one pattern.	
	Given that this is Pattern <i>m</i> , find	
	(i) the value of m ,	[1]
	(ii) how many counters are not used.	[1]

4024/02/M/J/06

- 6 (a) The results of a survey of 31 students are shown in the Venn diagram.
 - $\mathscr{C} = \{$ students questioned in the survey $\}$
 - $M = \{$ students who study Mathematics $\}$
 - $P = \{$ students who study Physics $\}$
 - $S = \{$ students who study Spanish $\}$

(i) Write down the value of

(ii)

(a) x ,	[1]
(b) $n(M \cap P)$,	[1]
(c) $n(M \cup S)$,	[1]
(d) $n(P')$.	[1]
Write down a description, in words, of the set that has 16 members.	[1]

(b) In the diagram, triangle AQR is similar to triangle ABC.

AQ = 8 cm, QB = 6 cm and AR = 10 cm.

(i)	Calculate the length of <i>RC</i> .	[2]
(ii)	Given that the area of triangle AQR is 32 cm^2 , calculate the area of triangle ABC .	[2]

4024/02/M/J/06

Section B [48 marks]

Answer **four** questions in this section.

Each question in this section carries 12 marks.

7 James and Dan are partners in a small company.

From each year's profit, James is paid a bonus of \$15000 and the remainder is shared between James and Dan in the ratio 2:3.

- (a) In 1996 the profit was \$20000. Show that Dan's share was \$3000. [1] (**b**) In 1997 the profit was \$21 800. Calculate the percentage increase in the profit in 1997 compared to 1996, (i) [2] (ii) the total amount, including his bonus, that James received in 1997. [2] (c) In 1998 Dan received \$7500. Calculate the profit in 1998. [3] (d) In 1999, the profit was x, where x > 15000. (i) Write down an expression, in terms of x, for the amount Dan received. [1]
 - (ii) Given that Dan received half the profit, write down an equation in *x* and hence find the amount that Dan received. [3]

4024/02/M/J/06

[Turn over

8 Answer the whole of this question on a sheet of graph paper.

The table below gives some values of *x* and the corresponding values of *y*, correct to one decimal place, where

$$y = \frac{x^2}{8} + \frac{18}{x} - 5.$$

x	1	1.5	2	2.5	3	4	5	6	7	8
У	13.1	7.3	4.5	3.0	2.1	1.5	1.7	p	3.7	5.3

(a) Find the value of *p*.

(b) Using a scale of 2 cm to 1 unit, draw a horizontal *x*-axis for $0 \le x \le 8$.

Using a scale of 1 cm to 1 unit, draw a vertical *y*-axis for $0 \le y \le 14$.

On your axes, plot the points given in the table and join them with a smooth curve. [3]

- (c) Use your graph to find
 - (i) the value of x when y = 8, [1]
 - (ii) the least value of $\frac{x^2}{8} + \frac{18}{x}$ for values of x in the range $0 \le x \le 8$. [1]
- (d) By drawing a tangent, find the gradient of the curve at the point where x = 2.5. [2]
- (e) On the axes used in part (b), draw the graph of y = 12 x. [2]
- (f) The x coordinates of the points where the two graphs intersect are solutions of the equation

$$x^3 + Ax^2 + Bx + 144 = 0.$$

Find the value of *A* and the value of *B*.

© UCLES 2006

4024/02/M/J/06

www.xtremepapers.net

[1]

[2]

9 In the diagram, A and B are two points North on a straight coastline. *B* is due east of *A* and AB = 7 km. **SEA** The position of a boat at different times was noted. 7 В A LAND (a) At 8 a.m., the boat was at C, where North 0 $A\hat{C}B = 66^{\circ}$ and $A\hat{B}C = 48^{\circ}$. 66 Calculate 48 (i) the bearing of *B* from *C*, 7 [1] B A (ii) the distance AC. [3] (b) At 9 a.m., the boat was at D, where North D AD = 6.3 km and $DAB = 41^{\circ}$. Calculate 7 В A the area of triangle ADB, [2] (i) (ii) the shortest distance from the boat to the coastline. [2]

9

(c) At 11 a.m., the boat was at *E*, where AE = 9 km and BE = 5 km.

Calculate the bearing of *E* from *A*.

4024/02/M/J/06

10 (a) The lengths of 120 leaves were measured. The cumulative frequency graph shows the distribution of their lengths.

Use this graph to estimate

(i)	the median,	[1]
(ii)	the interquartile range,	[2]
(iii)	the number of leaves whose length is more than 31.5 cm.	[1]

(b) Each member of a group of 16 children solved a puzzle. The times they took are summarised in the table below.

Time (<i>t</i> minutes)	$5 < t \le 10$	$10 < t \le 12$	$12 < t \le 14$	$14 < t \le 16$	$16 < t \le 20$
Frequency	2	4	6	3	1

- (i) Write down an estimate of the number of children who took less than 13 minutes. [1]
- (ii) Calculate an estimate of the mean time taken to solve the puzzle. [3]
- (iii) Two children are chosen at random.

Calculate, as a fraction in its simplest form, the probability that one of these children took more than 10 minutes and the other took 10 minutes or less. [2]

(iv) A histogram is drawn to illustrate this information. The height of the rectangle representing the number of children in the interval $10 < t \le 12$ is 8 cm. Calculate the height of the rectangle representing the number of children in the interval $5 < t \le 10$. [2]

© UCLES 2006

4024/02/M/J/06

(a) A =		
(i)	Evaluate $4\mathbf{C} - 2\mathbf{A}$.	[2]
(ii)	Given that $\mathbf{B} = \mathbf{A}^{-1}$, find the value of <i>p</i> .	[2]
(iii)	Find the 2×2 matrix X , where $\mathbf{A}\mathbf{X} = \mathbf{C}$.	[2]
(iv)	The matrix C represents the single transformation T.	
	Describe, fully, the transformation T.	[2]
(b)	$\overrightarrow{PQ} = \begin{pmatrix} 3 \\ -9 \end{pmatrix} \qquad \overrightarrow{PR} = \begin{pmatrix} h \\ -6 \end{pmatrix} \qquad \overrightarrow{QU} = \begin{pmatrix} 7 \\ 2 \end{pmatrix} \qquad \overrightarrow{PS} = \begin{pmatrix} 17 \\ k \end{pmatrix}$	
(i)	Given that R lies on PQ , find the value of h .	[1]
(ii)	Express \overrightarrow{PU} as a column vector.	[1]
(iii)	Given that U is the midpoint of QS , find the value of k .	[2]
	 (a) A = (i) (ii) (iii) (iv) 	(a) $\mathbf{A} = \begin{pmatrix} 1 & -3 \\ 3 & -2 \end{pmatrix}$ $\mathbf{B} = \begin{pmatrix} -2p & 3p \\ -3p & p \end{pmatrix}$ $\mathbf{C} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ (i) Evaluate $4\mathbf{C} - 2\mathbf{A}$. (ii) Given that $\mathbf{B} = \mathbf{A}^{-1}$, find the value of p . (iii) Find the 2×2 matrix \mathbf{X} , where $\mathbf{A}\mathbf{X} = \mathbf{C}$. (iv) The matrix \mathbf{C} represents the single transformation T. Describe, fully, the transformation T. (b) $\overrightarrow{PQ} = \begin{pmatrix} 3 \\ -9 \end{pmatrix}$ $\overrightarrow{PR} = \begin{pmatrix} h \\ -6 \end{pmatrix}$ $\overrightarrow{QU} = \begin{pmatrix} 7 \\ 2 \end{pmatrix}$ $\overrightarrow{PS} = \begin{pmatrix} 17 \\ k \end{pmatrix}$ (i) Given that R lies on PQ , find the value of h . (ii) Express \overrightarrow{PU} as a column vector. (iii) Given that U is the midpoint of QS , find the value of k .

4024/02/M/J/06

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

4024/02/M/J/06
Centre Number	Candidate Number	Name		
UNIVERS	ITY OF CAMBRIDG General Certificate	E INTERNA	TIONAL EXA	MINATIONS rel
MATHEMATIC	CS (SYLLABUS D)			4024/01
Paper 1				May/ Jupa 2006
Candidates ansv Additional Mater	ver on the Question Pap ials: Geometrical instr	oer. ruments		2 nours
READ THESE INSTRUC	TIONS FIRST			
Write your Centre numbe Write in dark blue or blac You may use a pencil for Do not use staples, pape	er, candidate number an k pen in the spaces pro any diagrams or graphs er clips, highlighters, glue	nd name on all ovided on the G s. e or correction	the work you har Question Paper. fluid.	nd in.
Answer all questions. The number of marks is	given in brackets [] at t	he end of each	n question or part	t question.
If working is needed for a Omission of essential wo The total of the marks fo	any question it must be s orking will result in loss o r this paper is 80.	shown in the s of marks.	pace below that o	question.
NEITHER ELECTRONIC PAPER.	C CALCULATORS NO	OR MATHEMA	TICAL TABLES	MAY BE USED IN THIS
				For Examiner's Use

This document consists of 14 printed pages and 2 blank pages.

UNIVERSITY of CAMBRIDGE International Examinations

[Turn over

For Examiner's	2						
Use	NEITHER ELECTRONIC CALCULATORS NOR MATHEMATICAL TABLES MAY BE USED IN THIS PAPER.	Use					
1	(a) Express 0.527 as a percentage.						
	(b) Evaluate $5.6 \div 0.08$.						
	Answer (a)% [1]						
	(<i>b</i>)[1]						
2	Evaluate						
	(a) $\frac{6}{7} - \frac{1}{3}$,						
	(b) $\frac{2}{5} \times \frac{4}{9}$.						
	Answar(a) [1]						
	<i>Inswer</i> (<i>a</i>)[1]						
	(<i>b</i>)[1]						
3	3 The rate of exchange between pounds (£) and dollars (\$) was $\pounds 1 = \$2.80$.						
	Calculate						
	(a) the number of dollars received in exchange for ± 120 ,						
	(b) the number of pounds received in exchange for \$224.						
	Answer (a) $\$$ [1]						
	(b) f [1]						
	روب میں ایک	I					

4024/01/M/J/06

For Examiner's Use

		3
4	Con	nplete the statements in the answer spaces.
		Answer (a) 4872 correct to 1 significant figure is
		(b) 4872 correct to significant figures is 4870. [1]
5	(a)	A journey of 170 kilometres took $4\frac{1}{4}$ hours. Calculate the average speed in kilometres per hour.
	(b)	Potatoes cost 75 cents per kilogram. John paid \$1.20 for a bag of potatoes. How many kilograms did he buy?
		Answer (a) km/h [1]
		(<i>b</i>) kg [1]
6	It is (a) (b)	given that $p = \frac{12}{\sqrt{q}}$. Describe the relationship between <i>p</i> and <i>q</i> in words by completing the sentence in the answer space. Calculate <i>q</i> when <i>p</i> = 4.
		Answer (a) n is proportional to the square root of a [1]
		Answer (a) p is proportional to the square root of q. [1]
		$(b) q = \dots \dots$

4024/01/M/J/06

er's 7	A d She Cal	4 ealer sold a painting for \$800. made a profit of 25% on the price she paid for it. culate the price she paid for the painting	Fo Exama Us
	Car	culate the price she paid for the painting.	
		Answer \$[2]	
8	(a)	The time difference between Brunei and London is 7 hours. So, when it is 1900 in Brunei, it is 1200 in London. When it is 0330 in Brunei, what time is it in London?	
	(b)	An aircraft leaves Brunei at 630 p.m. local time. It arrives in Dubai at 10 p.m. local time. The flight took $7\frac{1}{2}$ hours. Calculate the time difference between Dubai and Brunei.	
		Answer (a)[1]	
		Answer (a)[1] (b)hours [1]	
9	The	Answer (a)[1] (b)hours [1] e thickness of an oil film is 0.000004 cm.	
9	The (a)	Answer (a)[1] (b)hours [1] e thickness of an oil film is 0.000 004 cm. Express 0.000 004 in standard form.	
9	The (a) (b)	Answer (a)[1] (b)[1] e thickness of an oil film is 0.000004 cm. Express 0.000004 in standard form. The oil covers an area of 20 m ² . Calculate the volume of the oil in cubic centimetres.	
9	The (a) (b)	Answer (a)[1] (b)	
9	The (a) (b)	Answer (a)[1] (b)hours [1] thickness of an oil film is 0.000004 cm. Express 0.000004 in standard form. The oil covers an area of 20 m ² . Calculate the volume of the oil in cubic centimetres.	
9	The (a) (b)	Answer (a)[1] (b)hours [1] e thickness of an oil film is 0.000 004 cm. Express 0.000 004 in standard form. The oil covers an area of 20 m ² . Calculate the volume of the oil in cubic centimetres.	
9	The (a) (b)	Answer (a)	

4024/01/M/J/06

4024/01/M/J/06

4024/01/M/J/06

www.xtremepapers

		9	For Examiner's
19		$C = \frac{5}{9}(F - 32)$	Use
	(a)	Calculate <i>C</i> when $F = -4$.	
	(b)	Express F in terms of C.	
		Answer (a) $C = \dots [1]$	
		(<i>b</i>) $F =$ [2]	
20	The in a Rea	diagram shows a gauge for measuring the water level reservoir. dings in metres taken over a certain period were as follows:	
	-2.3	3, -1.6, -0.4, 0.1, -0.5, 0.3, -1.2.	
	For	these readings $\overline{}$	
	(a)	find the difference, in metres, between the highest and lowest levels, -2	
	(b)	find the median,	
	(c)	calculate the mean.	
		Answer (a) m [1]	
		(<i>b</i>) m [1]	
		(<i>c</i>) m [2]	

4024/01/M/J/06

www.xtremepapers.net

- (a) In a game, players spin it twice and add the two numbers obtained.
 - (i) Complete the possibility diagram.

Answer (a)(i)

(ii) Find the probability that the total of the two numbers is

- (a) a prime number,
- (b) a perfect square.

Answer (a)(ii)(a)[1]

(b)[1]

(b) In another game, players spin it twice and multiply the two numbers obtained. Without drawing another possibility diagram, write down the probability that this product is a prime number.

Answer (b)[1]

© UCLES 2006

4024/01/M/J/06

www.xtremepapers.net

For Examiner's Use

22 A map is drawn using a scale of 1 cm to 5 m. The position of A is shown in the answer space below. (a) The point B is 70m duce East of A. Draw the line representing AB. (b) The point C is North of AB and equidistant from A and B. Angle BAC = 40°. (i) By drawing appropriate lines, find and label the point C. (ii) Find the actual distance AC. (iii) State the size of the reflex angle BAC. Answer (a) and (b)(i) N A (3) Answer (b)(ii)	For niner's	11
 (a) The point B is 70m due East of A. Draw the line representing AB. (b) The point C is North of AB and equidistant from A and B. Angle BAC = 40°. (i) By drawing appropriate lines, find and label the point C. (ii) Find the actual distance AC. (iii) State the size of the reflex angle BAC. Answer (a) and (b)(i) A [3] A [3] A [3] A [3] (iii) reflex BÂC =	²²	A map is drawn using a scale of 1 cm to 5 m. The position of A is shown in the answer space below.
 (b) The point C is North of AB and equidistant from A and B. Angle BAC = 40°. (i) By drawing appropriate lines, find and label the point C. (ii) Find the actual distance AC. (iii) State the size of the reflex angle BAC. Answer (a) and (b)(i) 		(a) The point <i>B</i> is 70 m due East of <i>A</i>.Draw the line representing <i>AB</i>.
Angle $BAC = 40^\circ$. (i) By drawing appropriate lines, find and label the point C . (ii) Find the actual distance AC . (iii) State the size of the reflex angle BAC . Answer (a) and (b)(i) (3) Answer (b)(ii)		(b) The point C is North of AB and equidistant from A and B.
 (i) By drawing appropriate lines, find and label the point <i>C</i>. (ii) Find the actual distance <i>AC</i>. (iii) State the size of the reflex angle <i>BAC</i>. <i>Answer (a)</i> and (<i>b</i>)(i) (i) <i>Answer (b</i>)(ii)		Angle $BAC = 40^{\circ}$.
(i) Find the actual distance AC . (ii) State the size of the reflex angle BAC . Answer (a) and (b)(i) (ii) $Answer (b)(ii)$		(i) By drawing appropriate lines, find and label the point <i>C</i> .
(ii) State the size of the reflex angle <i>BAC</i> . Answer (a) and (b)(i) (i) (i) (ii) (iii) (iii) reflex $B\hat{A}C = \dots $		(ii) Find the actual distance AC.
Answer (a) and (b)(i) Answer (b)(ii)		(iii) State the size of the reflex angle <i>BAC</i> .
(3) Answer (b)(ii)		Answer (a) and $(b)(i)$
(3] Answer (b)(ii)		
(3] Answer (b)(ii)		
(3] A A Answer (b)(ii)		
(3) A A Answer (b)(ii)		
$\begin{bmatrix} \mathbf{N} \\ \mathbf{A} \end{bmatrix}$ $\begin{bmatrix} \mathbf{A} \\ \mathbf{B} \\ \mathbf{A} \end{bmatrix}$ $\begin{bmatrix} \mathbf{C} \\ \mathbf{C} \end{bmatrix}$		
(3) A^{*} (3) $Answer (b)(ii) \dots n [1]$ (iii) reflex $B\hat{A}C = \dots [1]$ 0 UCLES 2006 402401/0/106	N	J
(3] Answer (b)(ii)		
[3] Answer (b)(ii) m [1] (iii) reflex $B\hat{A}C =$ [1]		
A • [3] Answer (b)(ii)		
(i) Answer (b)(ii)	A	•
Answer (b)(ii) m [1] (iii) reflex $B\hat{A}C$ =[1]		[6]
• UCLES 2006 4024/01/MJ/06 [Turn		Answer (b)(ii)
© UCLES 2006 4024/01/M/J/06		(iii) reflex $B\hat{A}C$ = [1]
© UCLES 2006 4024/01/M/J/06		(iii) Iteliex <i>BAC</i> –[1]
© UCLES 2006 4024/01/M/J/06		
© UCLES 2006 4024/01/M/J/06		
© UCLES 2006 4024/01/M/J/06 [Turn		
© UCLES 2006 4024/01/M/J/06 [Turn		
© UCLES 2006 4024/01/M/J/06 [Turn		
© UCLES 2006 4024/01/M/J/06 [Turn		
•	© UCLES 200	06 4024/01/M/J/06 [Turn

For Examiner's Use

23 (a) Simplify

- (i) x(3x+2) (2x+4), (ii) $\frac{ax^2 - x^2}{ax - x}$.
- (**b**) Factorise completely $7x^2 63$.

- Answer (a)(i)[1]
 - (ii)[2]
 - (*b*)[2]

4024/01/M/J/06

© UCLES 2006

	• D(-5,2) 0	• A(1,2)	•)	B(4,6)
(8)	Find the coordinates of the midpoint of	AR		
(b)	Calculate the length of <i>AB</i> .			
(c)	Calculate the gradient of the line <i>AB</i> .			
(d)	Find the equation of the line <i>AB</i> .			
(e)	The triangle <i>ABC</i> has line of symmetry Find the coordinates of <i>C</i> .	x = 4.		
(f)	Find the value of cosine $D\hat{A}B$.			
		Answer	(<i>a</i>)	() [1]
			(<i>b</i>)	[1]
			(<i>c</i>)	[1]
			(<i>d</i>)	[2]
			(e)	() [1]
			(f)	$\cos D\hat{A}B = \dots $

4024/01/M/J/06

BLANK PAGE

4024/01/M/J/06

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

4024/01/M/J/06

GCE O Level

MARK SCHEME for the May/June 2006 question paper

4024 MATHEMATICS

4024/02 Paper 2 maximum raw mark 100

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2006 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- C Consolation mark, sometimes awarded for an incorrect answer. In some places it may be earned in the working.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise.
- FT implies that the candidate has continued correctly after an error.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- FT Follow through
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOI Seen or implied
- SOS See Other Solution (the candidate makes a better attempt at the same question)

	Page 1		Mark Scheme			Syllabus	Paper		
			GCE O Level – Ma	ay/June 2000	6		4024	02	
1	(a)		$p+(\alpha r+\alpha r)/\alpha$			For 'cor	noleting the s	auare'	
•	(4)	For ı	numerical $\frac{p \pm (0r + 0r -)\sqrt{q}}{r}$			$\left(x-\frac{2}{2}\right)$	seen B1 $2\frac{1}{2}$	be B1	
		n = 4	r = 6	B1		(3)	9		
		$q = \overline{q}$	76 or $\sqrt{q} = 8.71$	B1					
		x = 2	2.12 or −0.79	B1 + B1	4	SC1 for −0.78	2.1 to 2.12 A	ND -0.79 to	
	(b)	$9a^2$	+16b ² - 24ab	B2	2	SC1 for	$9a^2 + 16b^2$	OR -24 <i>ab</i> seen	ı
	(c)	(4 –	(y)(3+2t)	B2	2	SC1 for	any pair corr	ectly factorised	
2	(a)	(i)	$\frac{2(7\times5+7\times3+3\times5)}{2(7\times5+7\times3+3\times5)}$	M1					
			142 cm ²	A1	2				
		(11)	2	• • •					
		(11)	$x^3 = 7 \times 5 \times 3$ soi	M1	0				
	(b)	(i)	4.7 to 4.72 cm	AT	2				
	(5)	(')	$\frac{1}{3}\pi 8^2 \times 15$	M1					
			1005 to 1010 cm ³	A1	2				
		(ii)	17 cm	B1	1				
		(iii)	$\pi \times 8 \times 17$ 427 to 427.3 cm ²	M1 A1	2				
		(iv)	628 to 628.6 f.t. cm ²	B1	1	f.t. 201	+ their 427		
3	(a)	(i)	$D\hat{C}B = 62^{\circ}$	B1					
		(ii)	<i>DÂB</i> = 118°f.t.	B1		f.t. 180	– their 62		
		(iii)	<i>ODB</i> = 28°	B1					
		(iv)	<i>CÔB</i> = 26 °	B1	4				
	(b)	(i)	140 360 soi	B1					
			78.1 to 78.25 cm ²	B1	2				
		(ii)	220°	B1					
			$2 \times \pi \times 8 x \frac{220}{2}$	M1					
			360		~				
			40.1 to 40.13 cm	A1	3				

 $\ensuremath{\mathbb{C}}$ University of Cambridge International Examinations 2006

Page 2	Mark Scheme	Syllabus	Paper
	GCE O Level – May/June 2006	4024	02

4	(a)	(i)	\$6.05	B1	1	
•	()	(-)	40.00	5.	-	
		(ii)	62.5%	B1	1	
	(b)	(i)	$\cos H\hat{C}B = \frac{60}{22}$ oe	M1		
			80 41.4° to 41.41°	A1	2	
		(ii)	$\sin 32 = \frac{40}{22}$	M1		
			<i>CD</i> 40			
			$CD = \frac{1}{\sin 32}$	M1		
			75.48 to 75.5 m	A1	3	
		(iii)	$\tan d = \frac{40}{2}$	M1		
			35		0	CC1 for 41 ⁰ to 41.00
			$a = 48.8^{\circ} t0.49^{\circ}$	AT	2	SC1 for 41° to 41.2°
	(c)	(i)	$\frac{4.6}{45}$	M1		
			15 0.31 s	A1		
		(ii)	54 km/h	B1	3	
5	(a)	6, 10	D, 14, 18	B1		
	(b)	4		B1		
	(c)	(i)	124	B1		
	(-)		0	D 4	4	
		(11)	2	BJ	4	
6	(a)	(i)	(a) 8	B1		
			(D) 4 (c) 21	B1 B1		
			(d) 19 f.t.	B1	4	f.t. 27 – their 8
		(ii)	Students who study Maths but not Physics	B1		(nor Spanish)
			or Students who study only Maths	B1	1	
	(b)	(i)	$\frac{8}{6} = \frac{10}{RC}$ or $\frac{8}{14} = \frac{10}{10 + RC}$ oe	M1		
			7.5 cm	A1	2	
		(ii)	$\left(\frac{8}{14}\right)^2$ or $\left(\frac{14}{2}\right)^2$ oe	M1		e.g. $\left(\frac{10}{10+4b \sin 7.5}\right)^2$
			98 cm ²	A1	2	(10 + ther 1.5)
		ı				

Page 3	Mark Scheme	Syllabus	Paper
	GCE O Level – May/June 2006	4024	02

7	(a)	$\frac{3}{5} \times 5000$ seen	B1	1	
	(b)	(i) $\frac{1800}{20000}$ 9%	M1 A1	2	
		(ii) $\frac{2}{5} \times (21800 - 15000))$ \$17 720	M1 A1	2	
	(c)	$\frac{5}{3}$ × 7500	M1		
		\$12 500 \$27 500 f.t.	A1 B1	3	f.t.15 000 + their 12 500 SC1 for \$33 750
	(d)	(i) $\frac{3}{5}(x-15000)$ oe	B1		
		(ii) their $\frac{3}{5}(x-15000) = \frac{x}{2}$ f.t.	M1		
		$\begin{array}{l} x = 90\ 000 \\ \Rightarrow \$45\ 000 \end{array}$	A1 A1	4	
8	(a)	2.5	B1	1	
	(b)	All 10 points plotted correctly f.t. (within 1 mm) 8 or 9 points plotted correctly (within	P2		
		Smooth curve, not grossly thick, thro' all plotted points of which at least 8 are correct	C1	3	lost for straight line, or incomplete
	(c)	(i) 1.4 < <i>x</i> < 1.5	X1		
		(ii) 6.4 to 6.5	Y1	2	
	(d)	Negative value	G1		
		2.0 to 2.5	G1	2	
	(e)	Line with negative slope thro' (0,12) Also through (6,6)	L1 L1	2	
	(f)	Attempt to simplify $\frac{x^2}{8} + \frac{18}{x} - 5 = 12 - x$	M1		Allow M1 for attempt to sub $x = 1.2$ and 7.5 and solve
		A = 8 AND B = -136	A1	2	

Page 4	Mark Scheme	Syllabus	Paper
	GCE O Level – May/June 2006	4024	02

9	(a)	(i) 138°	B1	1	
		(ii) $\frac{AC}{\sin 48} = \frac{7}{\sin 66}$	M1		
		$AC = \frac{7\sin 48}{\sin 66}$	M1		
		5.69 to 5.7 km	A1	3	
	(b)	(i) $\frac{1}{2} \times 7 \times 6.3 \sin 41$	M1		All M and A marks available for any COMPLETE alternative method
		14.46 to 14.5 km ²	A1	2	
		(ii) 6.3 sin 41 or $\frac{\text{area}}{3.5}$	M1		
		4.13 to 4.15 km	A1	2	
	(c)	Attempt at Cosine Rule involving BÂE	M1		
		$\cos A = \frac{9^2 + 7^2 - 5^2}{2 \times 9 \times 7} \left(= \frac{105}{126} \right)$	A1		
		33.5° to 34°	A1		
		$(0)56^{\circ} - 56.5^{\circ}$ f.t.	A1	4	f.t. 90 – their Ä
10	(a)	(i) 31.8 cm	B1	1	
		(ii) 32.1 – 31.65 cm 0.42 to 0.48 cm	M1 A1	2	Attempting to take readings at 90 and 30
		(iii) 108	B1	1	
	(b)	(i) 9	B1	1	
		(ii) (2 x 7.5) + (4 x 11) + (6 x 13) + (3 x 15) + (1 x 18)	M1		
		÷ 16 12.5 min	M1	3	
			~ 1	5	
		(iii) $\frac{7}{30}$ cao	B2	2	SC1 for any correct equivalent or $\frac{7}{60}$ or $\frac{7}{32}$
		(iv) 1.6 cm	B2	2	

Page 5	Mark Scheme	Syllabus	Paper
	GCE O Level – May/June 2006	4024	02

11	(a)	(i)	$\begin{pmatrix} -6 & 6 \\ -6 & 8 \end{pmatrix}$	B2	2	SC1 for 3 correct elements
		(ii)	Attempting to find AB or determ $A = 7$	M1		
			$p=\frac{1}{7}$	A1	2	
		(iii)	$ \begin{pmatrix} -2p & 3p \\ -3p & p \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \text{ attempt} $			
			or $\begin{pmatrix} 1 & -3 \\ 3 & -2 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$	M1		
			leading to 4 equations $\frac{1}{7} \begin{pmatrix} 2 & 3 \\ 3 & 1 \end{pmatrix}$	A1	2	
		(iv)	Reflection in y axis oe	B1 B1		
	(b)	(i)	<i>h</i> = 2	B1	1	
		(ii)	$\begin{pmatrix} 10 \\ 7 \end{pmatrix}$	B1	1	
		(iii)	-5	B2	2	

GCE O Level

MARK SCHEME for the May/June 2006 question paper

4024 MATHEMATICS					
4024/01	Paper 1	maximum raw mark 80			

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2006 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- C Consolation mark, sometimes awarded for an incorrect answer. In some places it may be earned in the working.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise.
- FT implies that the candidate has continued correctly after an error.

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- CWO Correct Working Only often written by a 'fortuitous' answer
- FT Follow through
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOI Seen or implied
- SOS See Other Solution (the candidate makes a better attempt at the same question)

	Page	1	Mark Scheme Syllabus		Syllabus	Paper		
			GCE O Level –	May/June 200	6	4024	01	
1	(a)		52.7 (%)	1				
	(b)		70	1	2			
2	(a)		11	1				
			21					
	(b)		8	1	2			
			45					
3	(a)		(\$) 336	1				
	(b)		(£) 80	1	2			
4	(a)		5000	1				
	(b)		3	1	2			
5	(a)		40 (km/h)	1				
	(b)		1.6 (kg)	1	2			
6	(a)		Inversely	1				
	(b)		9	1	2			
					12			12
7			(\$) 640	2	2	(100 or 25)×800	M1	
						125		
8	(a)		20 30 or 8 30 pm	1				
	(b)		4 (hours)	1	2			
9	(a)		4 x 10 ⁻⁶	1				
	(b)		(0).8 cm ³	2	3	Answer fig 8 or Fig 4 x 2	MA	
40	(-)	(1)		1				
10	(a)	(I) (II)						
	(1-)	(11)	$\left \begin{array}{c} 0 \\ (u =) \\ 0 \\ (u =) \\ 0 \\ (u =) \\ 0 \\ $		_			
	(a)		(x =) 2, (y =) 2	1	3		ļ	
11			(x =) -7, (y =) -3	3	3	One correct, with supporting working	C2	
					13	or correct method to eliminate <i>x</i> or <i>y</i>	M1	13

© University of Cambridge International Examinations 2006 WWW.Xtremepapers.net

	Page 2	age 2 Mark Scheme		Syllabus	Pape	Paper		
		GCE O Level – May/J	une 200	006 4024				
12	(a)	9	2		$\frac{360}{180 - 140} \text{ or } (2n - 4)9$ = 140 <i>n</i> oe	90 M1		
	(b)	80()	1	3				
13	(a)	26	1					
	(b) (i)	x ² cao	1					
	(ii)		1	3				
14	(a)	75	1					
	(b)	8	2	3	$3 \times 5 = 2x - 1 \text{ or } 3y = 2$ - 1 oe seen or $3 \times 5 = 2$ - 1 or $3x = 2y - 1$	2 <i>x</i> 2 <i>y</i> M1		
15	(a)	500 (m)	2		Correct method to fir area under line	nd M1		
	(b)	$\frac{k}{2k}$ or (0).5	1	3	Accept $-\frac{1}{2}$ etc.			
16	(a)	7	1					
	(b) (i)	50.5 (cm)	1					
	(ii)	128 (cm)	1	3				
				15			15	
17	(a)	-12	1					
	(b)	2, $-\frac{1}{2}$ oe	2	3	One correct	C1		
					or (2y + 1)(y – 2) seen	M1		
18	(a)	54 ^(°)	1					
	(b)	36 ^(°) or 90 – their (a) f.t.	1		O < B < 90 required			
	(c)	36 ^(°) or their (b) f.t.	1	3	O < C < 90 required			
19	(a)	-20	1					
	(b)	$\frac{9C + 160}{5}$ oe	2	3	$9C = 5F - 5 \times 32$ $\frac{9C}{5} = F - 32$	or M1		
20	(a)	2.6 (m) cao	1				1	
	(b)	–(0).5 (m)	1					
	(c)	–(0).8 (m)	2	4	$\frac{\text{Sum of readings}}{7} \text{ seen}$	M1		
				13			13	

Page 3	Mark Scheme	Syllabus	Paper
	GCE O Level – May/June 2006	4024	01

·								
21	(a)	(i)	7 9 13	1				
			5 6 8 10 14					
			7 8 – – 16					
			9 10 – 14 18					
			13 14 16 18 22					
		(II) (a)	6/25 oe f.t.	1		Follow through from their table		
		(b)	5/25 oe f.t.	1		Follow through from their table		
	(b)		0	1	4			
22	(a)		<i>NAB</i> = 90° ± 2°, <i>AB</i> = 14.0 ± 0.4 cm	1				
	(b)	(i)	$BAC = 40^{\circ} \pm 2^{\circ}$	1				
			Perp bisector, 90° ± 2°	1		Cuts <i>AB</i> up to 0.2 cm from centre		
		(ii)	45(.0) to 46.5 (m)	1				
		(iii)	320°	1	5			
					9			9
23	(a)	(i)	$3x^2 - 4$	1				
	. ,	(ii)	x with no wrong working seen	2		Correct factorisation of numerator or denominator	M1	
	(b)		Condone missing outside brackets, "=0", and use of wrong letter if clear			If only solutions (even incorrect) in answer give mark(s) if factors seen		
			7(x-3)(x+3)	2	5	Incomplete factorisation seen e.g. $7(x^2 - 9)$ or (7x - 21)(x + 3) etc.	M1	
24	(a)	(i)	$ \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} $	1				
		(ii)	Enlargement, with centre (0, 0), or factor 2	1				
	(b)	(i)	C drawn with vertices at (7, 3), (7, 4), (6, 6) and (6, 7) Accept reasonable freehand sides	2		At least 2 correct vertices or no sides or wrong centre or wrong direction	C1	
		(ii)	Shear	1				
		. /	Factor 3 and/or x-axis invariant dep	1	6			
					11			11
I			1	1	1		1	

© University of Cambridge International Examinations 2006 WWW.Xtremepapers.net

Page 4	Mark Scheme	Syllabus	Paper
	GCE O Level – May/June 2006	4024	01

25	(a)	$\left(2\frac{1}{2},4\right)$ oe	1				
	(b)	5	1				
	(c)	4/3 oe	1		Accept 1.33 or better		
	(d)	3 <i>y</i> = 4 <i>x</i> + 2 oe	2		Line of gradient their (c) or which passes through (1, 2) or (4, 6)	C1	
	(e)	(7, 2)	1				
	(f)	$-\frac{3}{5}$ oe f.t.	1	7	Accept - $\frac{3}{\text{their (b)}}$ f.t.		
				7			7

© University of Cambridge International Examinations 2006 WWW.Xtremepapers.net

UNIVERSITY Gen	OF CAMBRIDGE INTERNATIOn of CAMBRIDGE INTERNATIOn Of Certificate of Education Of Content	ONAL EXAMINATIONS
MATHEMATICS (SYLLABUS D)	4024/02
Paper 2		May/June 2005
Additional Materials:	Answer Booklet/Paper Electronic calculator Geometrical instruments Graph paper (1 sheet) Mathematical tables (optional)	2 hours 30 minutes

READ THESE INSTRUCTIONS FIRST

Write your answers and working on the separate Answer Booklet/Paper provided. Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A Answer all questions.

Section B

Answer any **four** questions.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

Show all your working on the same page as the rest of the answer.

Omission of essential working will result in loss of marks.

The total of the marks for this paper is 100.

You are expected to use an electronic calculator to evaluate explicit numerical expressions. You may use mathematical tables as well if necessary.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

This document consists of 11 printed pages and 1 blank page.

SP (SLM/AR) S84496/2 © UCLES 2005 UNIVERSITY of CAMBRIDGE International Examinations

[Turn over

Section A [52 marks]

Answer all the questions in this section.

1 (a) Remove the brackets and simplify

	(i)	4(3-2p)-3(1-p),	[1]
	(ii)	(3q-r)(q+2r).	[2]
(b)	Fac	torise completely $18t^2 - 2$.	[2]
(c)	Giv	en that $y = 18 + 3x^2$,	
	(i)	find the value of <i>y</i> when $x = -2$,	[1]
	(ii)	find the values of x when $y = 93$,	[2]
	(iii)	express x in terms of y.	[2]

2 (a) Two varieties of tea, 'High Blend' and 'Normal Blend', are made by mixing Grade A leaves and Grade B leaves.

(i)	In High Blend, the ratio of the masses of Grade A leaves to Grade B leaves is 3 : 2.	
	Find the mass of Grade A leaves used in making 250 g of High Blend.	[1]
(ii)	1 kg of Normal Blend is made by using 450 g of Grade A leaves.	
	Find, in its simplest form, the ratio of the masses of Grade A to Grade B leaves in No	rma

Blend. Give your answer in the form m : n, where m and n are integers. [2]

(iii) 250 g of High Blend is mixed with 1 kg of Normal Blend.

Calculate the percentage of the mass of this mixture that consists of Grade A leaves. [2]

(b) During a sale, a shop sold packets of tea for 20% less than the price shown on their labels. Elizabeth and Peter each bought a packet of tea in the sale.

(i)	Elizabeth's packet had a label price of \$4.50.	
	How much did she pay?	[1]
(ii)	Peter paid \$6.20 for his packet.	
	Calculate the price shown on its label.	[2]

4024/02/M/J/05

3 (a) In the diagram, *ABCD* is a parallelogram. *ADE* and *BFE* are straight lines.

AF = BF.

 $A\hat{B}F = 54^{\circ}$ and $C\hat{B}F = 57^{\circ}$.

Find the value of

- (i) *t*,
- (**ii**) *u*,
- (**iii**) *x*,
- (**iv**) *y*.

(b) This hexagon has rotational symmetry of order 3.

Calculate the value of *z*.

PQ = 18 cm, QR = 14 cm and QS = 21 cm.

(i) PR,

Calculate the length of

(**ii**) *RS*.

© UCLES 2005

4024/02/M/J/05

С

E

105

[1]

[1]

[1]

[1]

[2]

57

54

4

In triangle *ABC*, $B\hat{A}C = 90^\circ$, $B\hat{C}A = 55^\circ$ and AC = 20 cm. The triangle initially stood with *AC* on a horizontal surface. It was then rotated about the point *C* onto triangle *A'B'C*, where *ACB'* is a straight line.

(a) Calculate

	(i)	the length of <i>BC</i> ,	[2]
	(ii)	the distance AB' ,	[1]
	(iii)	the height of A' above CB' .	[2]
(b)	Des	cribe fully the path which the point A followed under this rotation.	[2]
(c)	Calo	culate the length of the path which the point A followed under this rotation.	[2]

4024/02/M/J/05

5 (a) Sweet packets contain sweets of different colours.

The number of yellow sweets in each of 25 packets was recorded. The table below shows the results.

Number of yellow sweets	0	1	2	3	4	5
Frequency	8	5	5	4	2	1

For this distribution,

- (i) write down the mode,
- (ii) write down the median,
- (iii) calculate the mean.
- (**b**) A bag contained 5 Red and 2 Blue beads.

Chris took 3 beads, at random, and without replacement, from the bag. The probability tree shows the possible outcomes and their probabilities.

(i)	Write down the values of p , q and r .			
(ii)	Expressing each answer as a fraction in its lowest terms, find the probability that			
	(a)	three Red beads were taken,	[1]	
	(b)	the first bead was Red, the second Blue and the third Red,	[1]	
	(c)	two of the beads were Red and one was Blue.	[2]	

4024/02/M/J/05

[1]

[1]

[2]
6 Read these instructions.

- A Choose two **different** digits from 1, 2, 3, 4, 5, 6, 7, 8 and 9.
- B Write down the larger two-digit number which can be formed from the chosen digits.
- C Write down the smaller two-digit number which can be formed from the chosen digits.
- D Subtract the smaller number from the larger and note the result.

Example: A	A Choos	se 2 and 8.
------------	---------	-------------

- B Larger number is eighty-two (82).
- C Smaller number is twenty-eight (28).D Subtract: 82

Subtract: 82
$$-\frac{28}{54}$$

Result = 54

(a) The digits 3 and 7 are chosen. Follow the instructions to find the result. [1] (b) Choose three other different pairs of digits. Follow the instructions to find the result in each case. [1] (c) What do you notice about all these results? [1] (d) The digits x and y, where x > y, are chosen. Find expressions, in terms of x and y, for the value of the larger number, [1] **(i)** [2] (ii) the result.

4024/02/M/J/05

Section B [48 marks]

Answer **four** questions in this section.

Each question in this section carries 12 marks.

7 [The volume of a pyramid is $\frac{1}{3} \times$ base area \times height.] [The volume of a sphere is $\frac{4}{3}\pi r^3$.]

Morph made several different objects from modelling clay. He used $500 \,\mathrm{cm}^3$ of clay for each object.

(a) He made a square-based cuboid of height 2 cm.

Calculate the length of a side of the square.

(b) He made a pyramid with a base area of $150 \,\mathrm{cm}^2$.

Calculate the height of the pyramid.

(c) He made a sphere.

Calculate the radius of the sphere.

(d) He wrapped the clay around the curved surface of a hollow cylinder of height 6 cm.

The thickness of the clay was 1.5 cm.

Calculate the radius of the hollow cylinder.

(e) He made a cone.

Then he cut through the cone, parallel to its base, to obtain a small cone and a frustum.

The height of the small cone was two-fifths of the height of the full cone.

Use a property of the volumes of similar objects to calculate the volume of clay in the small cone.

4024/02/M/J/05

www.xtremepapers.net

[2]

[2]

[2]

8 Answer the whole of this question on a sheet of graph paper.

During one day, at a point P in a small harbour, the height of the surface of the sea above the seabed was noted.

The results are shown in the table.

Time (<i>t</i> hours) after 8 a.m.	0	1	2	3	4	5	6	7	8	9
Height (y metres) above the sea-bed	3.8	3.3	2.5	1.8	1.2	1.0	1.2	1.8	2.5	3.3

(a) Using a scale of 1 cm to represent 1 hour, draw a horizontal *t*-axis for $0 \le t \le 9$.

Using a scale of 2 cm to represent 1 metre, draw a vertical *y*-axis for $0 \le y \le 4$.

On your axes, plot the points given in the table and join them with a smooth curve. [3]

[1]

- (b) (i) By drawing a tangent, find the gradient of the curve at the point where t = 4. [2]
 - (ii) Explain the meaning of this gradient.
- (c) On the same day, a straight pole was driven vertically into the seabed at the point *P*. Work started at 8 a.m.

The pole was driven in at a constant rate.

The height, *y* metres, of the top of the pole above the seabed, *t* hours after 8 a.m., is given by the equation

$$y = 4 - \frac{1}{2}t.$$

(i)	Write down the length of the pole.	[1]
(ii)	On the same axes as the curve, draw the graph of $y = 4 - \frac{1}{2}t$.	[2]
(iii)	How many centimetres was the top of the pole above the surface of the sea at noon?	[2]
(iv)	Find the value of t when the top of the pole was level with the surface of the sea.	[1]

4024/02/M/J/05

In the diagram, the quadrilateral *ABCD* represents a level park with a path *BD*. $AB = 600 \text{ m}, BC = 1040 \text{ m}, BD = 950 \text{ m}, C\hat{B}D = 42^{\circ} \text{ and } B\hat{A}D = 118^{\circ}.$

(a) Calculate

(i)	angle <i>ABD</i> ,	[4]
(ii)	the length of CD,	[4]
(iii)	the shortest distance from C to BD.	[2]

(b) A helicopter flew directly above the path *BD* at a constant height of 500 m.

Calculate the greatest angle of depression of the point *C* as seen by a passenger on the helicopter.

[2]

© UCLES 2005

4024/02/M/J/05

[Turn over

- 10 A route up a mountain is 20 km long. John followed this route at an average speed of x km/h.
 - (a) Write down an expression, in terms of x, for the number of hours he took to walk up the mountain.

(b) He came down the mountain by a different route. The length of this route was 25 km. His average speed coming down the mountain was 2 km/h greater than his average speed going up the mountain.

Write down an expression, in terms of *x*, for the number of hours he took to walk down. [1]

(c) It took John $1\frac{1}{2}$ hours less to come down than to go up.

Write down an equation in *x*, and show that it simplifies to

$$3x^2 + 16x - 80 = 0.$$
 [3]

[1]

- (d) Solve the equation $3x^2 + 16x 80 = 0$, giving both answers correct to 3 decimal places. [4]
- (e) Calculate, correct to the nearest minute, the **total** time John took to go up and come down the mountain. [3]

4024/02/M/J/05

Triangle *ABC* has vertices A(1, 1), B(3, 1) and C(1, 2). Triangle *DEF* has vertices D(-1, -1), E(-1, -3) and F(-2, -1).

The matrix **P** represents the **single** transformation, T, that maps triangle *ABC* onto triangle *DEF*.

(a)	(i)	Describe T fully .	[2]
	(ii)	Write down the matrix P .	[1]
(b)	And	other transformation is represented by the matrix Q , where $\mathbf{Q} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.	
	(i)	This transformation maps <i>B</i> onto <i>Y</i> .	
		Find the coordinates of <i>Y</i> .	[1]
	(ii)	This transformation maps <i>K</i> onto <i>C</i> .	
		Find the coordinates of <i>K</i> .	[2]
	(iii)	Describe, fully , the single transformation which is represented by Q .	[2]
	(iv)	The matrix R is given by $\mathbf{Q} = \mathbf{RP}$.	
		By considering the effects of transformations on triangle ABC , or otherwise, find R .	[2]
(c)	The	point <i>H</i> lies on <i>DC</i> produced, where $\overrightarrow{DH} = \begin{pmatrix} 18 \\ h \end{pmatrix}$.	
	Cal	culate	
	(i)	the ratio $DC: DH$,	[1]
	(ii)	the value of <i>h</i> .	[1]

11

4024/02/M/J/05

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

4024/02/M/J/05

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

4024 MATHEMATICS (SYLLABUS D)

4024/11

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2011	4024	11

Abbreviations

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working

or equivalent Special Case oe

SC

without wrong working www

Qu	Answers	Mark	Part marks
1	(a) 147 oe	1	
	(b) 17	1	
2	(a) $\frac{9}{50}$ cao	1	
	(b) π , $\sqrt{10}$,	1	
3	(a) $\frac{29}{30}$	1	
	(b) $\frac{8}{15}$	1	
4	(a) 1 or 25	1	
	(b) 216	1	
5	(a) -24	1	
	(b) 102	1	
6	(a) 4	1	
	(b) 36	1	
7	(a) $A \cup (B \cap C)$ oe	1	
	(b) Correct region shaded	1	
8	(a) 63	1	
	(b) 60	1	
9	(a) $4ab(3b-2a)$	1	
	(b) $(2x-5)(x+4)$	2	C1 for $(2x \pm a)(x \pm b)$, $a = 4$ or 5, $b = 4$ or 5
10	(a) 14 05 or 2 05 pm	2	B1 for $\frac{65}{20}$ or M1 for 10 50 + their $3\frac{1}{4}$
	(b) $\frac{100\text{T}}{110}$ oe	1	

© University of Cambridge International Examinations 2011

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2011	4024	11

11	(a) $-\frac{3}{2}$ oe	1	
	(b) $\begin{array}{ccc} x & 1 \\ y & 2 \\ 2y & 9 - 3x \end{array}$	2	C1 for 2 of these or B1 for $x() 1, y() 2$ and $2y() 9 - 3x$ () may contain =, < etc
12	(a) Showing 180 – 36	1	
	(b) 96	2	B1 for the angle of a regular hexagon or M1 for 360 – (their144 + their 120)
13	(a) 31	1	
	(b) 6	1	
	(c) 5	1	
14	(a) 12 000	2	B1 for two of 8, 300, 0.2 seen
	(b) 9.575	1	
15	(a =) 8.75 oe (b =) 6 oe	3	C2 for one correct www or B1 for $\frac{4}{7}$ or $\frac{7}{4}$ oe seen
16	(a) (x) $\frac{1}{4}$ or 0.25	1	
	(b) $(x=)\frac{2}{3}$ or -3	3	C2 for either www or M2 for $5x(x-1) - 2(x+1) = 8(x+1)(x-1)$ soi or M1 for $\frac{5x(x-1) - 2(x+1)}{(x+1)(x-1)}$ soi
17	(a) 38	1	
	(b) 104	1ft	ft $180 - 2 \times \text{their}$ (a)
	(c) 122	1	
	(d) 84	1ft	ft their (c) – 38
18	(a) 79 cao	1	
	(b) $n(n+1) + (n+2)^2$ oe	1	
	(c) $(A =) 2, (B =) 5, (C =) 4$	2	C1 for two of these or M1 for three correct equations or comparison with their (b)

© University of Cambridge International Examinations 2011

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2011	4024	11

19	(a)	(i) 3.6×10^{-6}	1	
		(ii) 3.6×10^{-3} oe	1ft	ft their (i) $\times 10^3$
	(b)	3700	2	M1 for correct removal of brackets or for division by 2×10^3
20	(a)	3	1	
	(b)	$\frac{3+2x}{x}$ oe	2	M1 for $yx - 2y = 3$ or $xy - 2x = 3$ soi
	(c)	4	2	M1 for $2t - 5 = 3$ soi
21	(a)	Tree diagram correct	2	C1 for $\frac{1}{3}$ and $\frac{2}{3}$ or $\frac{4}{5}, \frac{1}{5}, \frac{4}{5}$ and $\frac{1}{5}$
	(b)	$\frac{4}{15}$	1	
	(c)	$\frac{1}{15}$	2	M1 for $1 - \left(\frac{2}{3} \times \frac{4}{5} + \frac{2}{3} \times \frac{1}{5} + \frac{1}{3} \times \frac{4}{5}\right)$ or
				B1 for their $\frac{1}{3}$ and their $\frac{1}{5}$ seen
22	(a)	$1200 + 450\pi$	2	C1 for one correct term B1 for using πr^2 correctly
	(b)	$40 + 10\pi$ oe	3	B1 for using $2\pi r$ correctly and B1 for $20 + 20$
23	(a)	Correct triangle with sides 8 and 6	2	B1 for correct triangle without arcs or arcs seen but only one correct side or sides reversed
	(b)	(i) Bisector of <i>ABC</i>	1	
		(ii) Circular arc	1	
	(c)	Correct region shaded	1	
24	(a)	4 -5	2	C1 for one correct
	(b)	6 correct plots ft and curve	2ft	C1 for at least 4 plots and "curve"
	(c)	(i) 0 cao 2.4 to 2.5 ft	2	C1 for either
		(ii) ft from graph	1ft	

© University of Cambridge International Examinations 2011

MATHEMATICS (SYLLABUS D)

Paper 2

4024/23

May/June 2010

2 hours 30 minutes

Additional Materials:

Answer Booklet/Paper Electronic calculator Geometrical instruments Graph paper (2 sheets) Mathematical tables (optional)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet. Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A

Answer all questions.

Section B

Answer any **four** questions.

Show all your working on the same page as the rest of the answer.

Omission of essential working will result in loss of marks.

You are expected to use an electronic calculator to evaluate explicit numerical expressions. You may use mathematical tables as well if necessary.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 100.

This document consists of **12** printed pages.

UNIVERSITY of CAMBRIDGE International Examinations

[Turn over

Section A [52 marks]

Answer all questions in this section.

1 (a) Sarah bought some soup, apples and mushrooms from her local shop. The table shows some of the amounts and prices.

Items	Price (\$)
p cans of soup at 90 cents per can	6.30
1.5 kilograms of apples at q per kilogram	4.35
r kilograms of mushrooms at \$6.40 per kilogram	1.60

- (i) Find the values of *p*, *q* and *r*.
- (ii) Sarah gives the shopkeeper \$20.00 to pay for all these items.

How much change does she receive?

[1]

[2]

(b)

Lavin decides to buy this washing machine.

	How much more would it cost Lavin if he paid for the washing machine using the finance offer instead of paying the \$980 immediately?	[2]
(c)	Asif deposits \$650 into a bank paying simple interest. He leaves the money there for 5 years. At the end of the 5 years, the amount in the bank is \$763.75.	
	Calculate the percentage rate of interest the bank paid per year.	[3]

4024/23/M/J/10

The parallelogram *ABCD* forms part of the pentagon *ABCDE*. $A\hat{B}C = 70^{\circ}$ and $B\hat{A}E = 120^{\circ}$.

- (a) Find
 - (i) $B\hat{C}D$, [1]
 - (ii) $E\hat{A}D$. [1]
- (**b**) $E\hat{D}C$ is twice $A\hat{E}D$.

Find

(i)
$$A\hat{E}D$$
, [3]

(ii)
$$EDA$$
. [1]

3 The mass and diameter of the planets in the inner solar system are shown in the table.

Planet	Mass (kg)	Diameter (km)
Mercury	3.30×10^{23}	4880
Venus	4.87×10^{24}	12100
Earth	$5.97 imes 10^{24}$	12800
Mars	6.42×10^{23}	6790

(a) List the planets in order of mass, starting with the lowest.

WW X

(b) Find the radius, in kilometres, of Mars, giving your answer correct to 1 significant figure. [1]

- (c) Giving your answer in standard form, find the total mass, in kilograms, of Venus and Mars. [1]
- (d) [Volume of a sphere = $\frac{4}{3}\pi r^3$]

Giving your answer in standard form, find the volume, in cubic kilometres, of the Earth. [2]

PF.

[1]

The shaded region, \mathbf{R} , contained **inside** the dotted boundary lines, is defined by three inequalities.

(a) One of these inequalities is x > 2.

Write down the other two inequalities.

(b) The points (c, d), where c and d are integers, lie in the shaded region **R**.

Find

(i) the maximum value of c + d, [1]

[3]

[1]

(ii) the value of d given that d = 3c.

4024/23/M/J/10

5 (a) Bertie goes shopping and buys three different types of fruit.

The first matrix below shows the number of kilograms of each fruit bought during two different weeks.

The second matrix shows the price per kilogram, in cents, of each fruit.

	bananas	apples	grapes	price/kg		
Week 1 Week 2	$\begin{pmatrix} 1\\ 1.5 \end{pmatrix}$	2 1	$\begin{pmatrix} 0.5\\1 \end{pmatrix}$	$\left(\begin{array}{c} 290\\ 160\\ 640 \end{array}\right)$	bananas apples grapes	
(i) $\mathbf{F} = \begin{pmatrix} 1 \end{pmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\left(\begin{array}{c}290\\160\\640\end{array}\right)$	$\left(\begin{array}{c} \\ \\ \end{array} \right)$.			
Find F						[2]

- (ii) Explain the meaning of the information given by the matrix \mathbf{F} . [1]
- (iii) Find the total amount of money, in dollars, that Bertie spent on fruit during the two weeks.

[1]

[2]

(b) The matrix **M** satisfies the equation

$$8\begin{pmatrix}3&0\\-1&2\end{pmatrix}+5\mathbf{M}=\mathbf{M}.$$

Find M.

- (c) $\mathscr{C} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16\}$ $A = \{x : x \text{ is a multiple of } 3\}$ $B = \{x : x \text{ is a factor of } 24\}$ $C = \{x : x \text{ is an odd number}\}$
 - (i) Find
 - (a) n(B), [1]
 - $(\mathbf{b}) \quad (A \cup B \cup C)'. \tag{1}$
 - (ii) A number, k, is chosen at random from \mathscr{E} .
 - Find the probability that $k \in A \cap B$. [2]

4024/23/M/J/10

WWW_XTREMEPHPERS_NE

6 Answer the WHOLE of this question on a sheet of graph paper.

The table below shows some values of x and the corresponding values of y for

$$y = \frac{2^x}{4}.$$

x	-1	0	1	2	3	4	5
у	т	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4	п

[2]

- (a) Calculate the values of *m* and *n*.
- (b) Using a scale of 2 cm to represent 1 unit, draw a horizontal *x*-axis for $-1 \le x \le 5$. Using a scale of 2 cm to represent 1 unit, draw a vertical *y*-axis for $0 \le y \le 8$.

	On	your axes, plot the points given in the table and join them with a smooth curve.	[3]
(c)	Use	your graph to solve the equations	
	(i)	$\frac{2^x}{4} = 3,$	[1]
	(ii)	$2^{x} = 6.$	[1]
(d)	The	equation $y = \frac{2^x}{4}$ can be written in the form $y = 2^t$.	
	(i)	Find an expression for <i>t</i> in terms of <i>x</i> .	[1]
	(ii)	Hence, find the equation of the line that can be drawn on your graph to evaluate	
		y when $t = -\frac{3}{4}$.	[1]

4024/23/M/J/10

7 (a)

PQRS is a trapezium. *PQ* = 17 cm, *QR* = 8 cm, *SR* = 29 cm and $S\hat{R}Q = 90^{\circ}$.

Calculate

(i) the area of *PQRS*,

(ii) $P\hat{S}R$.

(b)

In the diagram, triangle *KLM* is similar to triangle *LNM*. KL = 15 cm, LM = 18 cm and LN = 10 cm.

(i)	Find KM.	[2]
(ii)	Find KN.	[2]
(iii)	<i>P</i> is the point on <i>LM</i> such that <i>PN</i> is parallel to <i>LK</i> .	
	Find $\frac{\text{the area of triangle } NPM}{\text{the area of trapezium } KLPN}$.	
	Give your answer as a fraction in its simplest form.	[2]

4024/23/M/J/10

NWW XTREMEPHPERS N

[1]

[2]

Section B [48 marks]

Answer **four** questions in this section.

Each question in this section carries 12 marks.

8 Ahmed throws a ball to John.

The ball travels 10 metres at an average speed of x metres per second.

- (a) Write an expression, in terms of *x*, for the time taken, in seconds, for the ball to travel from Ahmed to John.
- (b) John then throws the ball to Pierre. The ball travels 15 metres. The ball's average speed is 0.5 metres per second greater than the ball's average speed from Ahmed to John.

Write an expression, in terms of *x*, for the time taken, in seconds, for the ball to travel from John to Pierre. [1]

(c) The time taken between John catching the ball and then throwing it to Pierre is 2 seconds. The total time taken for the ball to travel from Ahmed to Pierre is 7 seconds.

Write down an equation in x, and show that it simplifies to

$$2x^2 - 9x - 2 = 0.$$
 [3]

- (d) Solve the equation $2x^2 9x 2 = 0$, giving each answer correct to 2 decimal places. [4]
- (e) (i) Find the average speed, in metres per second, of the ball as it travels from John to Pierre. [1]
 - (ii) How much longer does it take for the ball to travel from John to Pierre than from Ahmed to John?Give your answer in seconds. [2]

4024/23/M/J/10

The diagram shows two ports, *P* and *Q*, and a lighthouse *L*. $PQ = 20 \text{ km}, PL = 17 \text{ km}, Q\hat{P}L = 50^{\circ}$ and the bearing of *Q* from *P* is 075°.

(a)	Fine	Find the bearing of P from L . [1]				
(b)	Calo	culate <i>QL</i> .	[4]			
(c)	(i)	Calculate <i>PLQ</i> .	[3]			
	(ii)	Hence find the bearing of Q from L .	[1]			
(d)	Ab	bat leaves P and sails in a straight line to Q .				
	(i)	It takes 4 hours and 53 minutes to sail from P to Q . It arrives at Q at 0223.				
		At what time does it leave <i>P</i> ?	[1]			
	(ii)	Calculate the shortest distance between the boat and the lighthouse.	[2]			

4024/23/M/J/10

[Turn over

Flowerbed 1	Flowerbed 2	Flowerbed 3	Flowerbed 4
+ + + + + + + 0 0 + + + + + + + + + + +	+++++++++0000000000000000000000000000	$\begin{array}{c} + + + + + + + \\ + & 0 & 0 & 0 & + \\ + & 0 & 0 & 0 & 0 & + \\ + & 0 & 0 & 0 & 0 & + \\ + & + & + & + & + \end{array}$	$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$

The diagrams above show the first four flowerbeds in a sequence. Each flowerbed contains two types of plant, pansies (+) and primroses (O).

The table shows the number of plants in the first three flowerbeds.

Flowerbed number (<i>n</i>)	1	2	3	4	5
Number of pansies	10	14	18		
Number of primroses	2	6	12		
Total number of plants	12	20	30		

(a)	Cop	Copy and complete the columns for flowerbeds 4 and 5. [2]					
(b)	Finc	l an expression, in terms	of <i>n</i> , for				
	(i)	the number of pansies i	n flowerbed <i>n</i> ,	[1]			
	(ii)	the number of primrose	es in flowerbed <i>n</i> .	[1]			
(c)	Her	ce show that the total nu	The imber of plants in flower bed n can be expressed in the form				
			(n+2)(n+3).	[2]			
(d)	Calo	culate the total number o	f plants in flowerbed 10.	[1]			
(e)	The	re are 306 plants in flow	erbed k.				
	(i)	Show that k satisfies the	e equation				
			$k^2 + 5k - 300 = 0.$	[2]			
	(ii)	Solve the equation	$k^2 + 5k - 300 = 0.$	[2]			
	(iii) Hence find the number of pansies in flowerbed k . [1]						

10

4024/23/M/J/10

WWW.XTREMEPHPERS.NET

11 Answer the WHOLE of this question on a sheet of graph paper.

(a) The time taken by 140 children to run 200 metres was recorded. The results are summarised in the table below.

Time (<i>t</i> seconds)	$22 \le t < 24$	$24 \le t < 26$	$26 \le t < 31$	$31 \le t < 36$	$36 \le t < 46$
Frequency	12	18	42	28	40

Using a scale of 1 cm to represent 2 seconds, draw a horizontal axis for time from 22 seconds to 46 seconds.
 Using a scale of 1 cm to represent 1 unit, draw a vertical axis for frequency density from 0 to 9 units.

On your axes, draw a histogram to represent the information in the table. [3]

- (ii) Estimate the number of children who took less than 25 seconds to run 200 metres. [1]
- (iii) One child was chosen at random.

Calculate the probability that the time taken by this child was less than 36 seconds. Express your answer as a fraction in its lowest terms. [1]

(iv) Out of the 30 children who took less than 26 seconds, two were chosen at random.

Calculate the probability that they both took less than 24 seconds.

(b) Some boys were put into five groups, *A*, *B*, *C*, *D* and *E*, based on the times they took to run 100 metres.

The pie chart shows the proportion of boys in each group.

Group *A* contains $\frac{1}{4}$ of the boys. Group *B* contains 35% of the boys. Group *C* is represented by a sector with an angle of 42°. Group *D* contains 9 boys.

(i) Find the fraction of boys in group *C*. Give your answer in its lowest terms. [1]
(ii) Given that the number of boys in group *B* is 21, find the total number of boys who ran the 100 metres. [2]
(iii) Calculate the number of boys in group *E*. [2]

4024/23/M/J/10

WW_XTREMEPHP

[2]

12 [Volume of a cone = $\frac{1}{3} \pi r^2 h$] [Curved surface area of a cone = $\pi r l$]

> Diagram I shows a solid cone with C as the centre of its base. B is the vertex of the cone and A is a point on the circumference of its base. AC = 9 cm and BC = 12 cm.

. __'¥

[2]

[2]

[2]

(a) Calculate

- (i) AB,
- (ii) the total surface area of the cone,
- (iii) the volume of the cone.
- (b) The cone in Diagram I is cut, parallel to the base, to obtain a small cone shown in Diagram II and a frustum shown in Diagram III. *Y* is the centre of the base of the small cone. *X* is the point on the circumference of this base and on the line *AB* such that *XY* = 3 cm.
 Calculate
 (i) *BY*,

4024/23/M/J/10

WWW.XTREMEPAPERS.NET

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

MATHEMATICS (SYLLABUS D)

Paper 2

4024/22

May/June 2010

2 hours 30 minutes

Additional Materials:

Answer Booklet/Paper Electronic calculator Geometrical instruments Graph paper (2 sheets) Mathematical tables (optional)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet. Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A

Answer all questions.

Section B

Answer any **four** questions.

Show all your working on the same page as the rest of the answer.

Omission of essential working will result in loss of marks.

You are expected to use an electronic calculator to evaluate explicit numerical expressions. You may use mathematical tables as well if necessary.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 100.

This document consists of **12** printed pages.

UNIVERSITY of CAMBRIDGE International Examinations

[Turn over

Section A [52 marks]

Answer all questions in this section.

1 (a) Sarah bought some soup, apples and mushrooms from her local shop. The table shows some of the amounts and prices.

Items	Price (\$)
p cans of soup at 90 cents per can	6.30
1.5 kilograms of apples at q per kilogram	4.35
r kilograms of mushrooms at \$6.40 per kilogram	1.60

- (i) Find the values of *p*, *q* and *r*.
- (ii) Sarah gives the shopkeeper \$20.00 to pay for all these items.

How much change does she receive?

[1]

[2]

(b)

Lavin decides to buy this washing machine.

	How much more would it cost Lavin if he paid for the washing machine using the finance offer instead of paying the \$980 immediately?	[2]
(c)	Asif deposits \$650 into a bank paying simple interest. He leaves the money there for 5 years. At the end of the 5 years, the amount in the bank is \$763.75.	
	Calculate the percentage rate of interest the bank paid per year.	[3]

4024/22/M/J/10

The parallelogram *ABCD* forms part of the pentagon *ABCDE*. $A\hat{B}C = 70^{\circ}$ and $B\hat{A}E = 120^{\circ}$.

- (a) Find
 - (i) $B\hat{C}D$, [1]
 - (ii) $E\hat{A}D$. [1]
- (**b**) $E\hat{D}C$ is twice $A\hat{E}D$.

Find

(i)
$$A\hat{E}D$$
, [3]

(ii)
$$EDA$$
. [1]

3 The mass and diameter of the planets in the inner solar system are shown in the table.

Planet	Mass (kg)	Diameter (km)
Mercury	3.30×10^{23}	4880
Venus	4.87×10^{24}	12100
Earth	$5.97 imes 10^{24}$	12800
Mars	6.42×10^{23}	6790

(a) List the planets in order of mass, starting with the lowest.

WW X

(b) Find the radius, in kilometres, of Mars, giving your answer correct to 1 significant figure. [1]

- (c) Giving your answer in standard form, find the total mass, in kilograms, of Venus and Mars. [1]
- (d) [Volume of a sphere = $\frac{4}{3}\pi r^3$]

Giving your answer in standard form, find the volume, in cubic kilometres, of the Earth. [2]

7E

[1]

The shaded region, \mathbf{R} , contained **inside** the dotted boundary lines, is defined by three inequalities.

(a) One of these inequalities is x > 2.

Write down the other two inequalities.

(b) The points (c, d), where c and d are integers, lie in the shaded region **R**.

Find

(i) the maximum value of c + d, [1]

[3]

[1]

(ii) the value of d given that d = 3c.

4024/22/M/J/10

5 (a) Bertie goes shopping and buys three different types of fruit.

The first matrix below shows the number of kilograms of each fruit bought during two different weeks.

The second matrix shows the price per kilogram, in cents, of each fruit.

	bananas	apples gr	rapes	price/kg		
Week 1 Week 2	$\begin{pmatrix} 1\\ 1.5 \end{pmatrix}$	2 0 1	$\begin{pmatrix} 0.5\\1 \end{pmatrix}$	$\left(\begin{array}{c} 290\\ 160\\ 640 \end{array}\right)$	bananas apples grapes	
(i) $\mathbf{F} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{pmatrix} 290\\160\\640 \end{pmatrix}$).			
Find F	r.					[2]

- (ii) Explain the meaning of the information given by the matrix \mathbf{F} . [1]
- (iii) Find the total amount of money, in dollars, that Bertie spent on fruit during the two weeks.

[1]

[2]

(b) The matrix **M** satisfies the equation

$$8\begin{pmatrix}3&0\\-1&2\end{pmatrix}+5\mathbf{M}=\mathbf{M}.$$

Find M.

- (c) $\mathscr{C} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16\}$ $A = \{x : x \text{ is a multiple of } 3\}$ $B = \{x : x \text{ is a factor of } 24\}$ $C = \{x : x \text{ is an odd number}\}$
 - (i) Find
 - (a) n(B), [1]
 - $(\mathbf{b}) \quad (A \cup B \cup C)'. \tag{1}$
 - (ii) A number, k, is chosen at random from \mathscr{E} .
 - Find the probability that $k \in A \cap B$. [2]

4024/22/M/J/10

WWW_XTREMEPHPERS_NE

6 Answer the WHOLE of this question on a sheet of graph paper.

The table below shows some values of x and the corresponding values of y for

$$y = \frac{2^x}{4}.$$

x	-1	0	1	2	3	4	5
у	т	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4	n

[2]

- (a) Calculate the values of *m* and *n*.
- (b) Using a scale of 2 cm to represent 1 unit, draw a horizontal x-axis for $-1 \le x \le 5$. Using a scale of 2 cm to represent 1 unit, draw a vertical y-axis for $0 \le y \le 8$.

	On	your axes, plot the points given in the table and join them with a smooth curve.	[3]
(c)	Use	your graph to solve the equations	
	(i)	$\frac{2^x}{4} = 3,$	[1]
	(ii)	$2^{x} = 6.$	[1]
(d)	The	equation $y = \frac{2^x}{4}$ can be written in the form $y = 2^t$.	
	(i)	Find an expression for t in terms of x .	[1]
	(ii)	Hence, find the equation of the line that can be drawn on your graph to evaluate	
		y when $t = -\frac{3}{4}$.	[1]

4024/22/M/J/10

7 (a)

PQRS is a trapezium. *PQ* = 17 cm, *QR* = 8 cm, *SR* = 29 cm and $S\hat{R}Q = 90^{\circ}$.

Calculate

(i) the area of *PQRS*,

(ii) $P\hat{S}R$.

(b)

In the diagram, triangle *KLM* is similar to triangle *LNM*. KL = 15 cm, LM = 18 cm and LN = 10 cm.

(i)	Find KM.	[2]
(ii)	Find KN.	[2]
(iii)	<i>P</i> is the point on <i>LM</i> such that <i>PN</i> is parallel to <i>LK</i> .	
	Find $\frac{\text{the area of triangle } NPM}{\text{the area of trapezium } KLPN}$.	
	Give your answer as a fraction in its simplest form.	[2]

4024/22/M/J/10

NWW XTREMEPHPERS N

[1]

[2]

Section B [48 marks]

Answer **four** questions in this section.

Each question in this section carries 12 marks.

8 Ahmed throws a ball to John.

The ball travels 10 metres at an average speed of *x* metres per second.

- (a) Write an expression, in terms of *x*, for the time taken, in seconds, for the ball to travel from Ahmed to John.
- (b) John then throws the ball to Pierre. The ball travels 15 metres. The ball's average speed is 0.5 metres per second greater than the ball's average speed from Ahmed to John.

Write an expression, in terms of *x*, for the time taken, in seconds, for the ball to travel from John to Pierre. [1]

(c) The time taken between John catching the ball and then throwing it to Pierre is 2 seconds. The total time taken for the ball to travel from Ahmed to Pierre is 7 seconds.

Write down an equation in x, and show that it simplifies to

$$2x^2 - 9x - 2 = 0.$$
 [3]

- (d) Solve the equation $2x^2 9x 2 = 0$, giving each answer correct to 2 decimal places. [4]
- (e) (i) Find the average speed, in metres per second, of the ball as it travels from John to Pierre. [1]
 - (ii) How much longer does it take for the ball to travel from John to Pierre than from Ahmed to John?Give your answer in seconds. [2]

4024/22/M/J/10

The diagram shows two ports, *P* and *Q*, and a lighthouse *L*. $PQ = 20 \text{ km}, PL = 17 \text{ km}, Q\hat{P}L = 50^{\circ}$ and the bearing of *Q* from *P* is 075°.

(a)	Fine	I the bearing of P from L .	[1]
(b)	Calo	culate <i>QL</i> .	[4]
(c)	(i)	Calculate <i>PLQ</i> .	[3]
	(ii)	Hence find the bearing of Q from L .	[1]
(d)	Ab	bat leaves P and sails in a straight line to Q .	
	(i)	It takes 4 hours and 53 minutes to sail from P to Q . It arrives at Q at 0223.	
		At what time does it leave <i>P</i> ?	[1]
	(ii)	Calculate the shortest distance between the boat and the lighthouse.	[2]

4024/22/M/J/10

[Turn over

			+ + + + + + +
+ + + + + 0 0 + + + + +	+++++++++0000000000000000000000000000	+++++++++++0000+++0000+++++++++++++++	$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$

The diagrams above show the first four flowerbeds in a sequence. Each flowerbed contains two types of plant, pansies (+) and primroses (O).

The table shows the number of plants in the first three flowerbeds.

Flowerbed number (<i>n</i>)	1	2	3	4	5
Number of pansies	10	14	18		
Number of primroses	2	6	12		
Total number of plants	12	20	30		

(a)	Copy and complete the columns for flowerbeds 4 and 5. [2]				
(b)	Fine	l an expression, in terms	of <i>n</i> , for		
	(i)	the number of pansies i	n flowerbed <i>n</i> ,	[1]	
	(ii)	the number of primrose	es in flowerbed <i>n</i> .	[1]	
(c)	Her	ice show that the total nu	The imber of plants in flower bed n can be expressed in the form		
			(n+2)(n+3).	[2]	
(d) Calculate the total number of plants in flowerbed 10.				[1]	
(e)	The	re are 306 plants in flow	erbed k.		
	(i)	Show that k satisfies th	e equation		
			$k^2 + 5k - 300 = 0.$	[2]	
	(ii)	Solve the equation	$k^2 + 5k - 300 = 0.$	[2]	
	(iii)	Hence find the number	of pansies in flowerbed <i>k</i> .	[1]	

10

4024/22/M/J/10

WWW.XTREMEPHPERS.NET

11 Answer the WHOLE of this question on a sheet of graph paper.

(a) The time taken by 140 children to run 200 metres was recorded. The results are summarised in the table below.

Time (<i>t</i> seconds)	$22 \le t < 24$	$24 \le t < 26$	$26 \le t < 31$	$31 \le t < 36$	$36 \le t < 46$
Frequency	12	18	42	28	40

Using a scale of 1 cm to represent 2 seconds, draw a horizontal axis for time from 22 seconds to 46 seconds.
 Using a scale of 1 cm to represent 1 unit, draw a vertical axis for frequency density from 0 to 9 units.

On your axes, draw a histogram to represent the information in the table. [3]

- (ii) Estimate the number of children who took less than 25 seconds to run 200 metres. [1]
- (iii) One child was chosen at random.

Calculate the probability that the time taken by this child was less than 36 seconds. Express your answer as a fraction in its lowest terms. [1]

(iv) Out of the 30 children who took less than 26 seconds, two were chosen at random.

Calculate the probability that they both took less than 24 seconds.

(b) Some boys were put into five groups, *A*, *B*, *C*, *D* and *E*, based on the times they took to run 100 metres.

The pie chart shows the proportion of boys in each group.

Group *A* contains $\frac{1}{4}$ of the boys. Group *B* contains 35% of the boys. Group *C* is represented by a sector with an angle of 42°. Group *D* contains 9 boys.

(i) Find the fraction of boys in group *C*. Give your answer in its lowest terms.
(ii) Given that the number of boys in group *B* is 21, find the total number of boys who ran the 100 metres.
(iii) Calculate the number of boys in group *E*.

4024/22/M/J/10

WW_XTREMEPHP

[1]

[2]

[2]

[2]

12 [Volume of a cone = $\frac{1}{3} \pi r^2 h$] [Curved surface area of a cone = $\pi r l$]

> Diagram I shows a solid cone with C as the centre of its base. B is the vertex of the cone and A is a point on the circumference of its base. AC = 9 cm and BC = 12 cm.

[2]

[2]

[2]

[2]

[2]

(a) Calculate

Calculate

BY,

AX.

(i)

(ii)

- (i) AB,
- (ii) the total surface area of the cone,
- (iii) the volume of the cone.
- (b) The cone in Diagram I is cut, parallel
to the base, to obtain a small cone shown
in Diagram II and a frustum shown in
Diagram III.
Y is the centre of the base of the small cone.
X is the point on the circumference of this
base and on the line AB such that
XY = 3 cm.Diagram III
Diagram III

(iii) the circumference of the base of the small cone,(iv) the volume of the frustum.

4024/22/M/J/10

IWW.XTREMEPAPERS.NE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

MATHEMATICS (SYLLABUS D)

Paper 2

4024/21

May/June 2010

2 hours 30 minutes

Additional Materials:

Answer Booklet/Paper Electronic calculator Geometrical instruments Graph paper (2 sheets) Mathematical tables (optional)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet. Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A

Answer all questions.

Section B

Answer any four questions.

Show all your working on the same page as the rest of the answer.

Omission of essential working will result in loss of marks.

You are expected to use an electronic calculator to evaluate explicit numerical expressions. You may use mathematical tables as well if necessary.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 100.

This document consists of **10** printed pages and **2** blank pages.

UNIVERSITY of CAMBRIDGE International Examinations

[Turn over

2 Section A [52 marks]

Answer **all** questions in this section

1	A function is defined by $f(x) = \frac{x-2}{5}$.	
	(a) Find f(7).	[1]
	(b) Given that $f(t) = t$, find <i>t</i> .	[2]
	(c) Find $f^{-1}(x)$.	[2]

2 Wasim owns a shop.

The table shows the cost price and selling price of three items in his shop.

Item	Cost Price (\$)	Selling Price (\$)
Trampoline	48	66
Swing	X	19.50
Bicycle	82	110

(a)	Calculate his percentage profit when he sells a trampoline.	[2]
(b)	Wasim makes a profit of 30% when he sells a swing.	
	Calculate the cost price, x , of a swing.	[3]
(c)	In a sale, the selling price of a bicycle is reduced by 20%.	
	(i) Find the sale price of a bicycle.	[1]

(ii)

THURSDAY SPECIAL

Save 10% off the **sale price**.

Jaspreet bought a bicycle on a Thursday.

Calculate the difference between the amount Jaspreet paid and the cost price. [2]

4024/21/M/J/10

WWW.XTREMEPAPERS.NET

- 3
- 3 The diagram below is a sketch of a rectangular field *WXYZ*. WX = 65 m and XY = 40 m.

(a)	Usi	ng a scale of 1 cm to 5 m, make a scale drawing of the field.	[1]
(b)	(i)	On your scale drawing, construct the locus of all the points in the field that are	
		I equidistant from Z and Y, II 45 m from X.	[2]
	(ii)	Hence label the region, R , of points that are nearer to <i>Z</i> than <i>Y</i> and not more than 45 m from <i>X</i> .	[1]
(c)	A p A p	ost <i>P</i> is placed in the region R so that it is at the maximum distance from <i>Y</i> . ost <i>Q</i> is placed at the midpoint of the line <i>ZY</i> .	
	(i)	Label the posts <i>P</i> and <i>Q</i> on your drawing.	[1]
	(ii)	By measurement, find	
		(a) the actual distance between the posts P and Q in the field,	[1]
		(b) the obtuse angle PQ makes with QY .	[1]
(a)	Exp	press as a single fraction in its simplest form $\frac{4}{x+3} - \frac{3}{2x-1}$.	[3]
(b)	It is	given that $k = \sqrt{2lm + 3n}$.	
	Exp	press m in terms of k , l and n .	[2]
(c)	Sol Giv	we the equation $3x^2 - 4x - 16 = 0$. e your answers correct to 2 decimal places.	[4]

4

4024/21/M/J/10

WWW_XTREMEPHPERS_NET

- 5 (a) Ben travels to work by bus, by bicycle or by car.
 - The probability that he travels by bus on any day is 0.5.

The probability that he travels by bicycle on any day is 0.2.

The tree diagram below shows some of the probabilities of the possible journeys on Monday and Tuesday.

(b) The Venn diagram shows the three means of transport used by a group of workers during a week.

- How many used both a bus and a car but not a bicycle? (i)
- **(ii)** Twice as many **only** used a bicycle as **only** used a bus. There were 78 workers in the group.

How many used a bus only?

[1]

[2]

4024/21/M/J/10

A, *B* and *C* are points on the circumference of a circle, centre *O*. *AE* and *CE* are tangents to the circle. $A\hat{C}E = 68^{\circ}$ and $B\hat{C}O = 46^{\circ}$.

(a) Calculate

(i)
$$A\hat{O}C$$
, [2]

(ii)
$$A\hat{E}C$$
. [1]

(b) Find the three angles of the triangle *ABC* and hence state the name given to this special triangle.

[2]

7 Answer the WHOLE of this question on a sheet of graph paper.

The table below shows the amount of time spent playing sport each week by 80 students.

Time (<i>t</i> hours)	$0 < t \le 2$	$2 < t \le 4$	$4 < t \le 6$	$6 < t \le 8$	$8 < t \le 10$
Frequency	20	31	22	5	2

- (a) Calculate an estimate of the mean time spent playing sport each week by the students. [3]
- (b) Copy and complete the cumulative frequency table below.

Time (<i>t</i> hours)	$t \leq 2$	$t \leq 4$	$t \leq 6$	$t \leq 8$	<i>t</i> ≤ 10
Cumulative frequency	20	51			80

[1]

[3]

- (c) Using a horizontal scale of 1 cm to represent 1 hour and a vertical scale of 1 cm to represent 5 students, draw a smooth cumulative frequency curve for this data.
- (d) Use your graph to estimate
 - (i) the median,(ii) the interquartile range.[2]

4024/21/M/J/10

WW XTRE

Section B [48 marks]

Answer **four** questions in this section.

Each question in this section carries 12 marks.

 $y = \frac{12}{x} - x.$

8 Answer the WHOLE of this question on a sheet of graph paper.

The table below shows some values of x and the corresponding values of y for

x	1	2	3	4	5	6
у	11	4	1	-1	р	-4

- (a) Calculate *p*.
- (b) Using a scale of 2 cm to represent 1 unit, draw a horizontal *x*-axis for $0 \le x \le 6$. Using a scale of 1 cm to represent 1 unit, draw a vertical *y*-axis for $-4 \le y \le 14$.

On your axes, plot the points given in the table and join them with a smooth curve. [3]

- (c) Use your graph to solve the equation $\frac{12}{x} x = 2$ in the range $1 \le x \le 6$. [1]
- (d) The equation $\frac{12}{x} = 2x$ can be solved using the intersection of your curve and a straight line.
 - (i) State the equation of this straight line. [1]
 - (ii) By drawing this straight line, solve the equation $\frac{12}{x} = 2x$. [2]
- (e) The points A and B are (1, 11) and (4, -1) respectively.

Find the gradient of the line *AB*.

- (f) The line *l* is parallel to *AB* and is a tangent to the curve $y = \frac{12}{x} x$.
 - (i) Draw the line *l*. [1]
 (ii) Find the coordinates of the point where *l* crosses the *y*-axis. [1]
 (iii) Hence find the equation of the line *l*. [1]

4024/21/M/J/10

[1]

[1]

Diagram I

Diagram I shows a vessel in the shape of a prism. The cross-section *OAB* is a sector of a circle of radius 8 cm and $A\hat{OB} = 90^{\circ}$.

- **(a)** (i) Calculate the perimeter of the sector OAB.
 - The vessel, which stands on a horizontal table, contains 800cm³ of water, shown shaded in **(ii)** the diagram.

Calculate the depth of the water in the vessel.

The vessel is now placed so that its curved surface is in contact with the horizontal table as shown in Diagram II.

Diagram III shows the cross-section of the vessel with the shaded section representing the water. *P* is the midpoint of the arc *AB* and is in contact with the table. Q is the point on the water surface, MN, which is vertically above P.

It is given that OQ = x centimetres.

- (a) Write down an expression, in terms of x, for MN. **(i)** [1]
 - (b) Show that the shaded area in Diagram III is $(16\pi x^2)$ square centimetres. [2]
- The vessel still contains 800 cm³ of water. **(ii)**

Given that the length of the vessel is 20 cm, find the value of *x*. [3]

© UCLES 2010

4024/21/M/I/10

[Turn over

[3]

[3]

8

ABCDEFGH is an octagon with exactly two lines of symmetry. These are shown by the dashed lines PQ and RS which intersect at O. $A\hat{B}C = 140^{\circ}.$

- (a) Find
 - $E\hat{F}G$, (i)
 - FĜH. (ii)
- (b) The diagram shows part of the octagon.

Calculate CT.

T is the point such that PT and TS are perpendicular. PB = 50 cm, BT = 23 cm and CS = 20 cm.

Т 140С 20 0 S Calculate the area of the pentagon PBCSO.

F

50

В

23

[1]

[2]

[2]

[3]

[1]

[1]

- (iii) Hence find the area of the octagon ABCDEFGH.
- (iv)

(i)

(ii)

The octagonal shape ABCDEFGH is to be cut from a rectangular piece of card where the length and breadth, measured in centimetres, are integers. The remaining card is wasted. The card that is wasted must be kept to a minimum.

Find

- (a) the length and breadth of the rectangular piece of card, [2]
- (b) the area of the card that is wasted.

WW X

4024/21/M/J/10

25

11 (a) The diagram shows triangles *A*, *B*, *C* and *D*.

© UCLES 2010

4024/21/M/J/

10

In the diagram, *OPQR* is a parallelogram. $\overrightarrow{OP} = \mathbf{p}$ and $\overrightarrow{OQ} = \mathbf{q}$. *S* is the point on *OP* such that *OS* : *SP* is 1 : 3. *T* is the midpoint of *OR*.

Giving your answers in their simplest form, find, in terms of **p** and **q**,

(i) \overrightarrow{QP} ,

(ii)
$$\overrightarrow{TS}$$
.

(b) In triangle WXY, WX = 24 cm, WY = 17 cm and $X\hat{W}Y = 55^{\circ}$.

[2]

[1]

[2]

[4]

Diagram II

- [2]
- [1]

- (a) the area of triangle *WXY*,
- **(b)** *XY*.

(ii) [Volume of a pyramid = $\frac{1}{3} \times$ base area \times height]

The triangle *WXY* shown in Diagram I forms the horizontal base of the triangular pyramid *VWXY*, shown in Diagram II.

The vertex V is vertically above Z, a point on WX. WV = 15 cm and WZ = $\frac{1}{4}$ WX.

- (a) Calculate VZ.
- (b) Hence find the volume of the pyramid.

4024/21/M/J/10

WWW_XTREMEPHPERS_NET

11 BLANK PAGE

© UCLES 2010

4024/21/M/J/10

12 BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2010

4024/21/M/J/10

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

	CANDIDATE NAME		
	CENTRE NUMBER	CANDIDATE NUMBER	
*	MATHEMATICS	S (SYLLABUS D)	4024/13
6 4	Paper 1		May/June 2010
<u>٥</u>			2 hours
۲	Candidates ans	wer on the Question Paper.	
	Additional Mate	rials: Geometrical instruments	
*	READ THESE I	NSTRUCTIONS FIRST	

Write your Centre number, candidate number and name on all the work you hand in.Write in dark blue or black pen.You may use a pencil for any diagrams or graphs.Do not use staples, paper clips, highlighters, glue or correction fluid.DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

If working is needed for any question it must be shown in the space below that question. Omission of essential working will result in loss of marks.

NEITHER ELECTRONIC CALCULATORS NOR MATHEMATICAL TABLES MAY BE USED IN THIS PAPER.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 80.

For Examiner's Use

This document consists of **20** printed pages.

UNIVERSITY of CAMBRIDGE International Examinations

[Turn over

NEITHER ELECTRONIC CALCULATORS NOR MATHEMATICAL TABLES
MAY BE USED IN THIS PAPER.

For Examiner's Use

Answer (b)[1]

Answer (a)[1]

Answer (a)[1]

(b) $1\frac{1}{5} \div 2\frac{1}{3}$.

(a) $\frac{5}{7} - \frac{2}{5}$,

1

2

Evaluate

(a) $1.5 - 0.2 \times 4$,

(b) $4.2 \div 0.07$.

Express as a single fraction

Answer (b)[1]

4024/13/M/J/10

3	(a)) In a town, 11 000 people out of the total population of 50 000 are aged under 18. What percentage of the population is aged under 18?					
		Answer (a) % [1]					
	(b)	A company employing 1200 workers increased the number of workers by 15%.					
		How many workers does it now employ?					
		Answer (b)[1]					
4	Eva	luate					
	(a)	$9^1 + 9^0$,					
		Answer (a)[1]					
	(b)	$\left(\frac{1}{2}\right)^{\frac{1}{2}}$.					
		(9)					
		Answer (b)[1]					

4024/13/M/J/10

WWW.XTREMEPHPERS.NET

5	By writing each number correct to 1 significant figure, estimate the value of $\frac{48.9\times0.207^2}{3.94}.$	For Examiner's Use
	Answer	
6	(a) Solve $\frac{3}{x-1} = 2$.	
	(b) Given that $p = 2t - r$, express <i>t</i> in terms of <i>p</i> and <i>r</i> .	
	Answer (b) $t =$	

4024/13/M/J/10

7 (a) On the regular hexagon below, draw all the lines of symmetry.

(b) On the grid below, draw a quadrilateral with rotational symmetry of order 2.

[1]

[1]

For Examiner's Use

8 The table shows the record minimum monthly temperatures, in °C, in Vostok and London.

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Vostok	-36	-47	-64	-70	-71	-71	-74	-75	-72	-61	-45	-35
London	-10	-9	-8	-2	-1	5	7	6	3	-4	-5	_7

Find

(a) the difference between the temperatures in Vostok and London in July,

Answer (*a*)°C [1]

(b) the difference between the temperatures in Vostok in February and June.

Answer (*b*)°C [1]

4024/13/M/J/10

WW XTREMEPHPE

[Turn over

9	Written as a product of prime factors, $168 = 2^3 \times 3 \times 7$.									
	(a)	Express 140 as a product of its prime factors.		Examiner's Use						
		Answer	(<i>a</i>)[1]							
	(b)	Find the highest common factor of 168 and 140.								
		Answer	(<i>b</i>)[1]							
	(c)	Find the smallest positive integer, n , such that $168n$ is a sq	uare number.							
		Answer	(c) [1]							
		111151701	(0)[1]							
10	(a)	Jane and Ken share some money in the ratio 5 : 3. Ken's share is \$16 less than Jane's share.								
		Find each person's share.								
		Answer	(<i>a</i>) Jane \$							
			Ken \$ [2]							
	(b)	The scale of a map is $1:25\ 000$. The distance between two villages is 10 cm on the map.								
		Find the actual distance, in kilometres, between the villages								

Answer (b) km [1]

4024/13/M/J/10

WWW.XTREMEPHPERS.NET

11	Given that $f(x) = \frac{5-2x}{3x}$, find			For Examiner's
	(a) f(-2),			Use
	(b) $f^{-1}(x)$	Answer	(a) $f(-2) = \dots [1]$	
		Answer	(b) $f^{-1}(x) = \dots \dots [2]$	
12	It is given that <i>y</i> is inversely proportional to the square	e of x and the set of x and	hat $y = 48$ when $x = \frac{1}{2}$.	
	Find			
	(a) the formula for y in terms of x ,			
		Answer	(<i>a</i>) <i>y</i> =[2]	
	(b) the values of x when $y = 3$.			
		Answer	(b) $x = \dots $	

4024/13/M/J/10

13 Solve the simultaneous equations.

For Examiner's Use

$$3x + 2y = 7$$
$$x - 3y = 17$$

Answer $x = \dots$

y =[3]

4024/13/M/J/10

WWW.XTREMEPAPERS.NET

15

4024/13/M/J/10

WWW.XTREMEPAPERS.NET

16 A bag contains 6 red counters and 4 blue counters. For Two counters are taken from the bag at random, without replacement. Examiner's Use (a) Complete the tree diagram below that represents these events. Answer (a) First counter Second counter 5 9 , red $\frac{6}{10}$ red blue red blue blue [1] (b) Expressing your answer as a fraction in its simplest form, calculate the probability that both counters are the same colour.

11

Answer (b)[2]

4024/13/M/J/10

NWW XTREMEPAPERS NE

4024/13/M/J/10

4024/13/M/J/10

WW XTREMEPAP

20 The graph shows the cumulative frequency curve for the ages of 60 employees.

4024/13/M/J/10

21	(a)	Factorise completely	For
		(i) $3x^2 - 12x$,	Use
		Answer (a)(i) [1]	
		(ii) $x^2 - xy - 2y^2$.	
		Answer (a)(ii) [1]	
	(b)	Simplify $x^2 + 4x$	
	(D)	Simplify $\frac{1}{x^2 - 16}$.	
		Answer (b)[2]	

4024/13/M/J/10

WWW.XTREMEPHPERS.NET

22	(a)	Ab	bx has volume $2.5 \mathrm{m}^3$.	For
		Exp	ress this volume in cm ³ .	Examiner Use
			Answer (a) $\operatorname{cm}^{3}[1]$	
	(b)	Johi The	n has a length of string. string is 4 m long, correct to the nearest 10 cm.	
		(i)	Write down the lower bound of the length of the string. Give your answer in centimetres.	
			<i>Answer</i> (<i>b</i>)(i) cm [1]	
		(ii)	John cuts off ten pieces of string. Each piece is 5 cm long, correct to the nearest centimetre.	
			Find the minimum possible length of string remaining. Give your answer in centimetres.	
			Answer (b)(ii) cm [2]	

16

For

4024/13/M/J/10

NWW_XTREMEPHPERS_NE

[Turn over

23

- 24 The diagram below shows three triangles, P, Q and R.
 - (a) Triangle T is the image of triangle P under an enlargement with centre (5, 2) and scale factor 2.

Draw and label triangle *T* on the diagram.

Answer (a)

For Examiner's Use

4024/13/M/J/10

25

© UCLES 2010

4024/13/M/J/10

W XTREME

[Turn over

4024/13/M/J/10

WW_XTREMEPAPERS_NE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

	CANDIDATE NAME		
	CENTRE NUMBER	CANDIDATE NUMBER	
* 0 7	MATHEMATICS	S (SYLLABUS D)	4024/12
N л	Paper 1		May/June 2010
			2 hours
N	Candidates answ	wer on the Question Paper.	
7 3 2	Additional Mater	rials: Geometrical instruments	
*	READ THESE II	NSTRUCTIONS FIRST	

Write your Centre number, candidate number and name on all the work you hand in.Write in dark blue or black pen.You may use a pencil for any diagrams or graphs.Do not use staples, paper clips, highlighters, glue or correction fluid.DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

If working is needed for any question it must be shown in the space below that question. Omission of essential working will result in loss of marks.

NEITHER ELECTRONIC CALCULATORS NOR MATHEMATICAL TABLES MAY BE USED IN THIS PAPER.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 80.

For Examiner's Use

This document consists of **20** printed pages.

UNIVERSITY of CAMBRIDGE International Examinations

[Turn over

NEITHER ELECTRONIC CALCULATORS NOR MATHEMATICAL TABLES
MAY BE USED IN THIS PAPER.

For Examiner's Use

- 1 Evaluate
 - (a) $1.5 0.2 \times 4$,

Answer (a)[1]

(b) $4.2 \div 0.07$.

2 Express as a single fraction

(a)
$$\frac{5}{7}-\frac{2}{5}$$
,

Answer (a)[1]

(b) $1\frac{1}{5} \div 2\frac{1}{3}$.

Answer (b)[1]

4024/12/M/J/10

3	 (a) In a town, 11 000 people out of the total population of 50 000 are aged under 18. What percentage of the population is aged under 18? 									
		Answer (a) % [1]								
	(b)	A company employing 1200 workers increased the number of workers by 15%.								
		How many workers does it now employ?								
		Answer (b)[1]								
4	Eva	luate								
	(a)	$9^1 + 9^0$,								
		Answer (a)[1]								
	(b)	$\left(\underline{1}\right)^{\frac{1}{2}}$.								
	()	(9)								
		Answer (b)[1]								

4024/12/M/J/10

WWW.XTREMEPHPERS.NET

5	By writing each number correct to 1 significant figure, estimate the value of $\frac{48.9 \times 0.207^2}{3.94}$.	For Examiner's Use
	Answer	
6	(a) Solve $\frac{3}{x-1} = 2$.	
	Answer (a) $x =$ [1] (b) Given that $p = 2t - r$, express <i>t</i> in terms of <i>p</i> and <i>r</i> .	
	Answer (b) $t =$	

4024/12/M/J/10

7 (a) On the regular hexagon below, draw all the lines of symmetry.

(b) On the grid below, draw a quadrilateral with rotational symmetry of order 2.

[1]

[1]

For Examiner's Use

8 The table shows the record minimum monthly temperatures, in °C, in Vostok and London.

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec
Vostok	-36	-47	-64	-70	-71	-71	-74	-75	-72	-61	-45	-35
London	-10	-9	-8	-2	-1	5	7	6	3	-4	-5	_7

Find

(a) the difference between the temperatures in Vostok and London in July,

Answer (*a*)°C [1]

(b) the difference between the temperatures in Vostok in February and June.

Answer (*b*)°C [1]

4024/12/M/J/10

WW XTREMEPHPE

[Turn over
9	Written as a product of prime factors, $168 = 2^3 \times 3 \times 7$.						
	(a)	Express 140 as a product of its prime factors.		Examiner s Use			
		Answer	(<i>a</i>)[1]				
	(b)	Find the highest common factor of 168 and 140.					
		Answer	(<i>b</i>)[1]				
	(c)	Find the smallest positive integer, n , such that 168 n is a second s	uare number.				
		Answer	(c)[1]				
10	(a)	Jane and Ken share some money in the ratio 5 : 3. Ken's share is \$16 less than Jane's share.					
		Find each person's share.					
		Answer	(<i>a</i>) Jane \$				
	(b)	The scale of a map is $1 \cdot 25000$	Ken \$[2]				
	(0)	The distance between two villages is 10 cm on the map.					
		Find the actual distance, in kilometres, between the villages	S.				

Answer (b) km [1]

4024/12/M/J/10

WWW.XTREMEPAPERS.NET

11	Given that $f(x) = \frac{5-2x}{3x}$, find			For Examiner's
	(a) f(-2),			Use
	(b) $f^{-1}(x)$	Answer	(a) $f(-2) = \dots [1]$	
		Answer	(b) $f^{-1}(x) = \dots \dots [2]$	
12	It is given that <i>y</i> is inversely proportional to the square	e of x and the set of x and	hat $y = 48$ when $x = \frac{1}{2}$.	
	Find			
	(a) the formula for y in terms of x ,			
		Answer	(<i>a</i>) <i>y</i> =[2]	
	(b) the values of x when $y = 3$.			
		Answer	(<i>b</i>) $x = \dots $	

13 Solve the simultaneous equations.

For Examiner's Use

$$3x + 2y = 7$$
$$x - 3y = 17$$

Answer $x = \dots$

y =[3]

4024/12/M/J/10

WWW.XTREMEPAPERS.NET

© UCLES 2010

15

4024/12/M/J/10

WWW.XTREMEPAPERS.NET

16 A bag contains 6 red counters and 4 blue counters. For Two counters are taken from the bag at random, without replacement. Examiner's Use (a) Complete the tree diagram below that represents these events. Answer (a) First counter Second counter 5 9 , red $\frac{6}{10}$ red blue red blue blue [1] (b) Expressing your answer as a fraction in its simplest form, calculate the probability that both counters are the same colour.

11

Answer (b)[2]

4024/12/M/J/10

NWW XTREMEPAPERS NE

20 The graph shows the cumulative frequency curve for the ages of 60 employees.

21	(a)	Factorise completely	For
		(i) $3x^2 - 12x$,	Examiner's Use
		<i>Answer</i> (<i>a</i>)(i)	
	(b)	Answer (a)(ii)	
		Answer (b)[2]	

4024/12/M/J/10

WWW.XTREMEPHPERS.NET

22	(a)	A bo	bx has volume $2.5 \mathrm{m}^3$.	For
		Exp	ress this volume in cm ³ .	Examiner Use
			Answer (a) cm ³ [1]	
	(b)	Johr The	has a length of string. string is 4 m long, correct to the nearest 10 cm.	
		(i)	Write down the lower bound of the length of the string. Give your answer in centimetres.	
			Answer (b)(i) cm [1]	
		(ii)	John cuts off ten pieces of string. Each piece is 5 cm long, correct to the nearest centimetre.	
			Find the minimum possible length of string remaining. Give your answer in centimetres.	
			Answer (b)(ii) cm [2]	

23

© UCLES 2010

- 24 The diagram below shows three triangles, P, Q and R.
 - (a) Triangle T is the image of triangle P under an enlargement with centre (5, 2) and scale factor 2.

Draw and label triangle *T* on the diagram.

Answer (a)

For Examiner's Use

© UCLES 2010

4024/12/M/J/10

W_XTREM

[Turn over

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

	CANDIDATE NAME		
	CENTRE NUMBER	CANDIDATE NUMBER	
*	MATHEMATICS	G (SYLLABUS D)	4024/11
7 8	Paper 1		May/June 2010
			2 hours
N	Candidates ans	wer on the Question Paper.	
973	Additional Mate	rials: Geometrical instruments	
*	READ THESE I	NSTRUCTIONS FIRST	

Write your Centre number, candidate number and name on all the work you hand in.Write in dark blue or black pen.You may use a pencil for any diagrams or graphs.Do not use staples, paper clips, highlighters, glue or correction fluid.DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

If working is needed for any question it must be shown in the space below that question. Omission of essential working will result in loss of marks.

NEITHER ELECTRONIC CALCULATORS NOR MATHEMATICAL TABLES MAY BE USED IN THIS PAPER.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 80.

For Examiner's Use		

This document consists of **20** printed pages.

UNIVERSITY of CAMBRIDGE International Examinations

[Turn over

NEITHER ELECTRONIC CALCULATORS NOR MATHEMATICAL TABLES MAY BE USED IN THIS PAPER.

1

Evaluate

(a) $\frac{1}{2} + \frac{2}{9}$,

For Examiner's Use

Answer (a)[1] **(b)** $\frac{2}{3} \div \frac{9}{11}$. Answer (b)[1] 2 (a) Evaluate $10 - 8 \div 2 + 3$. Answer (a)[1] (**b**) Find 20% of 60 cm. *Answer* (*b*)cm[1] © UCLES 2010 4024/11/M/J/10

- 3 Sara carries out a survey of the colours of cars in a car park. She draws a pie chart to represent her results.
 - (a) There are 7 red cars. The angle representing the red cars is 40°.

Calculate the total number of cars in the car park.

Answer (*a*)[1]

For

Examiner's Use

(b) Sara's pie chart is a circle with circumference 28 cm.

Find, in terms of π , the diameter of the circle.

Answer (*b*) cm[1]

4 Ed goes on a car journey. The first 60 km of the journey takes 45 minutes. The remaining 20 km of the journey takes 30 minutes.

Calculate his average speed, in kilometres per hour, for the whole journey.

Answerkm/h [2]

4024/11/M/J/10

NWW_XTREMEPHPERS.NE

5			D•	North	• A		For Examiner's Use
			C•		• B		
	The The	bearing of a lighthouse from position of S is marked on t	n a ship, S he diagrar	, is 220°. n.			
	(a)	Which of the four points A	, B, C or D) is a possibl	e position	of the lighthouse?	
					Answer	(a)[1]	
	(b)	Write down the bearing of	S from the	lighthouse.			
					Answer	(<i>b</i>)[1]	
6	(a)	Solve $6x - 5 < 9 + 2x$.					
	(b)	Write down the largest inte	ger which 6 <i>x</i> –	satisfies the $5 < 9 + 2x$.	Answer inequality	(a)[1]	
					Answer	(b)[1]	

4024/11/M/J/10

7 Given that *n* is an integer and n > 1, decide whether each statement in the table is **true** or **false**.

For each statement write **true** or **false** in the table. If you write **false**, give an example to justify your decision.

Statement	True or False	Example (if false)
$n^3 > 1$		
$\frac{1}{n} > \frac{1}{n^2}$		
(n-1)(n+3) is always odd		
		·

8 (a) The ratio of Sayed's age to his mother's age is 2:7. Sayed is 14 years old.

How old is his mother?

Answer	(a)	years[1]
	· · · /	j i i i i i i i i i i i i i i i i i i i

(b) The ratio of Fatima's age to her father's age is 3:8. The total of their ages is 66 years.

How old is Fatima?

Answer (b)years[1]

For Examiner's Use

© UCLES 2010

4024/11/M/J/10

WWW.XTREMEPAPERS.NET

[Turn over

9			For
			Examiner s Use
	Pen Eac	cils are packed in a box. h pencil has a diameter of 7 mm, correct to the nearest millimetre.	
	(a)	Write down the lower bound of the diameter of a pencil.	
		Answer (a)mm[1]	
	(b)	Find the smallest width of a box that can always hold 8 pencils side by side. Give your answer in centimetres.	
		Answer (b)	
10	Eva	luate	
	(a)	0.2 imes 0.06,	
	(b)	Answer (a)	
	(c)	Answer (b)	
		Answer (c)	

4024/11/M/J/10

The diagram shows two circles, both with centre *O*. *CD* is a diameter of the small circle and *AB* is a diameter of the large circle.

Using congruent triangles, show that BD = AC. State your reasons clearly.

In	triangles		and	
----	-----------	--	-----	--

[3]

11

4024/11/M/J/10

WWW.XTREMEPHPERS.NET

4024/11/M/J/10

13 Two families ordered three basic food items from their local shop. The Jones family ordered 1 bag of sugar, 4 cartons of milk and 3 loaves of bread. The Singh family ordered no sugar, 3 cartons of milk and 5 loaves of bread. Their orders can be represented by the matrix A where

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 4 & 3 \\ 3 & 5 \end{pmatrix}.$$

The cost of a bag of sugar is 80 cents, the cost of a carton of milk is 50 cents and the cost of a loaf of bread is 40 cents.

This information can be represented by the matrix \mathbf{B} where

 $\mathbf{B} = (80 \ 50 \ 40).$

(a) Work out BA.

(b)

	Answer	(<i>a</i>)[2]
What does the matrix BA represent?		
Answer(b)		
		[1]

[Turn over

4024/11/M/J/10

WWW_XTREMEPHPERS_NE

14 Ida keeps a record of time spent on the internet each day. Her results are summarised in the table.

Time (<i>t</i> minutes)	Frequency
$0 \le t < 10$	4
$10 \le t < 30$	20
$30 \le t \le 60$	39
$60 \le t < 100$	32
$100 \le t < 120$	6

On the axes below, draw a histogram to show these results.

© UCLES 2010

4024/11/M/J/10

WWW.XTREMEPHPERS.NE

10

15	Ahmed goes shopping.		For
	(a)	In one shop he buys shorts for \$26.84 and a shirt for \$13.97.	Use
		How much does Ahmed spend altogether?	
		Answer (a) \$[1]	
	(b)	In another shop he buys 15 postcards for 46 cents each.	
		(i) Calculate the total cost, in dollars, of the postcards.	
		Answer (b)(i)	
		(ii) The rate of evolution between pounds (f) and dollars (f) was $f_1 = f_2 = f_0$	
		(ii) The face of exchange between pounds (z) and donars (ϕ) was $z_1 = \phi z_{-50}$.	
		Calculate the total cost of the postcards in pounds.	
		Answer (b)(ii) £	

4024/11/M/J/10

WWW.XTREMEPAPERS.NET

[Turn over

- 16 Dai played three games of cricket. His mean score was 9 runs. His median score was 8 runs. His highest score was 7 runs more than his lowest score.
 - (a) Find the number of runs he scored in each of the three games.

For

Examiner's Use

(b) Dai batted in a fourth game. The mean of his four scores was 11 runs.

Find the number of runs that Dai scored in the fourth game.

4024/11/M/J/10

17 *y* is inversely proportional to x^2 . Some values of *y* and *x* are given in the table below.

x	3	2	q
у	4	р	1

Find

(a) the formula for *y* in terms of *x*,

(**b**) the value of p,

Answer (b) p = [1]

Answer (a) $y = \dots [2]$

(c) the two values of q.

Answer (c) $q = \dots$ [1]

4024/11/M/J/10

IWW.XTREMEPAPERS.NE

For

Examiner's Use

WW XTREMEPHPERS NE

© UCLES 2010

4024/11/M/J/10

WWW_XTREMEPAPERS_NET

[Turn over

For

Use

4024/11/M/J/10

21	(a)) Write down, in terms of n , an expression for the n th term of the sequence		
		19 16 13 10	Examiner's Use	
	(b)	Answer (a)		
		(ii) $5ax - 5a^2 - 2x + 2a$.		
		Answer (b)(ii)[2]		

4024/11/M/J/10

WWW.XTREMEPAPERS.NET

[Turn over

For

22 A walker leaves his house at 10 00 and walks towards a shopping centre at a constant

4024/11/M/J/10

WWW.XTREMEPAPERS.NET

(b) Find the value of *t* when the stone hits the ground.

Answer (b) $t = \dots [2]$

Question 24 is printed on the following page

4024/11/M/J/10

WWW.XTREMEPHPERS.NE

[Turn over

(a) (i) Show that the values of t when the stone is 15 metres above the ground satisfy the equation

19

$$t^2 - 4t + 3 = 0.$$

(ii) Find the values of t when the stone is 15 metres above the ground.

[1]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2010

4024/11/M/J/10

MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

4024 MATHEMATICS (SYLLABUS D)

4024/22 Paper 22, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2010	4024	22

Section A

Qu	Answers	Mark	Comments
1	(a) (i) $p = 7, q = 2.9(0)$	B1	
	$r = 0.25 \text{ or } \frac{1}{4}$	B1	
	(ii) \$7.75	B1	
	(b) $0.2 \times 980 \ (= 196) \ and$ $24 \times 26 \ (= 864) \ soi$	M1	Correct method for both parts
	\$80	A1	
	(c) 3.5%	В3	SC2 for answer of 23.5 or 17.5 SC1 for answer of 117.5 or 763.75 650 soi by
		[8]	113.75 or 22.75
2	(a) (i) 110	B1	
	(ii) 10	B1ft	$120 - \text{their}(\mathbf{a})(\mathbf{i}) (\underline{\text{provided}} \text{ answer} > 0)$
	(b) (i) $x + 2x - 70 + \text{their } 10 = 180 \text{ oe}$	M2	Allow M2 for $2x - y = 70$ and $x + y = 170$
	or x + 2x + their $110 + 70 + 120 = 540$ oe		where $y = EDA$ If M0, SC1 for 2x, and
	80	A1	NB: 80 from wrong working is M0
	(ii) 90	B1ft	180 – their (a)(ii) – their (b)(i)
		[6]	Or $2 \times \text{their} (\mathbf{b})(\mathbf{i}) - 70$ (provided answer > 0)
3	(a) Mercury, Mars, Venus, Earth	B1	
	(b) 3000 or 3×10^3 cao	B1	
	(c) $5.5(12) \times 10^{24}$ isw	B1	
	(d) $\frac{4}{3}\pi (6.4 \times 10^3)^3$	M1	
	1.09 to $1.1(0) \times 10^{12}$ isw	A1 [5]	
4	(a) $y < 12$	B1	Condone $4 < y < 12$ and $y \le 12$
	<i>y</i> and <i>2x</i> seen in an equality of an inequality	IVI I	SC1 for $y > x$
	y > 2x oe	A1	
	(b) (i) 16	B1	
	(ii) $d = 9$ or $(3, 9)$	B1 [5]	

© UCLES 2010

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2010	4024	22

5	(a)	(i) $\begin{pmatrix} 930\\ 1235 \end{pmatrix}$ final answer	B2	
		After B0, column matrix with one correct or row matrix with both correct B1		
		(ii) Top value – cost of fruit in week 1Bottom value – cost of fruit in week 2	B1	
		(iii) \$21.65	B1ft	Sum of their two values divided by 100
	(b)	$M = \begin{pmatrix} -6 & 0 \\ 2 & -4 \end{pmatrix}$ oe without fractions	B2	SC1 for either +4M or -4M or + or $-\begin{pmatrix} 24 & 0\\ -8 & 16 \end{pmatrix}$
	(c)	(i) (a) 7	B1	
	(C)	(b) $\{10, 14, 16\}$	B1	
		(ii) $\frac{3}{16}$	B2 [10]	SC1 for $(A \cap B =)$ {3, 6, 12} Or n $(A \cap B) = 3$
6	(a)	$m = \frac{1}{8}$ $n = 8$	B1 B1	Accept 0.12 or 0.13 Accept $\frac{32}{4}$ or $\frac{8}{1}$ if correctly plotted
	(b)	5 correct central points	Р2	1 for each wrong plot1 wrong scale
		Smooth curve through 5 correct central plots	C1	-2 non-uniform scale Lost for ruled or thick lines
	(c)	(i) $3.5 - 3.7$ ft from $y = 3$	B1	Do not accept embedded answers unless clearly
		(ii) $2.5 - 2.7$ ft from $y = 1.5$	B1	justified on graph
	(d)	(i) $t = x - 2$	B1	
		(ii) $x = \frac{5}{4}$ or 1.25 final answer	B1 [9]	Follow through their expression provided it is linear

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper	
	GCE O LEVEL – May/June 2010	4024	22	

7	(a)	(i)	$184 (cm^2)$	B1		
		(ii)	Tan $P\widehat{SR} = \frac{8}{12}$	M1		
			$P\widehat{S}R = 33.69 \text{ to } 33.7$	A1		
	(b)	(i)	$\frac{KM}{LM} = \frac{KL}{LN} \text{oe}$	M1		$\frac{KM}{18} = \frac{15}{10}$ oe
			27 (cm)	A1		
		(ii)	KN = 15 cm	B2		After B0, $NM = 12$ seen B1
		(iii)	$\frac{16}{65}$ cao	B2	[9]	B1 for unsimplified equivalents or 0.246

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2010	4024	22

Section B

Qu		Answers	Mark	Comments
8	(a)	$\frac{10}{x}$	B1	
	(b)	$\frac{15}{x+0.5}$	B1	
	(c)	their $\frac{10}{x} + 2 + \text{their } \frac{15}{x + 0.5} = 7$	B1	
	0e	$5x (x + 0.5) = 10x + 5 + 15x$ $2x^{2} - 9x - 2 (= 0)$	M1 A1	Correct removal of the denominators x and $x + 0.5$ All correct – Answer given Must see at least 2 steps from previous line
	(d)	For numerical $\frac{p \pm (\text{or} + \text{or} -)\sqrt{q}}{r}$		
		p = 9 and r = 4 $q = 97 \text{ or } \sqrt{q} = 9.848$ 4.71	B1 B1 B1	SC1 for 4.7 to 4.72 <u>and</u> -0.2 to -0.22
		-0.21	B1	wwmax 2 marks
	(e)	(i) 5.2(1)	B1ft	Their $x + 0.5$ (provided $x > 0$) If 2 positive values allow ft on either
		(ii) $\frac{10}{\text{their 4.71}}$ and	M1	
		$\frac{15}{\text{their } 4.71 + 0.5}$		
		$0.75 \le t \le 0.8$	A1 [12]	
9	(a)	305° cao	B1	
	(b)	$20^{2} + 17^{2} \pm (2) \times 20 \times 17 \cos 50^{\circ}$ $QL^{2} = 20^{2} + 17^{2} - 2 \times 20 \times 17 \cos 50$ 15.87 - 15.9	M1 M1 A2	After A0, 251.9, 252 SC1
	(c)	(i) $\frac{\sin P\widehat{L}Q}{20} = \frac{\sin 50}{\text{their } 15.9}$	M1	
		$\sin P\widehat{L}Q = \frac{20\sin 50}{\text{their } 15.9}$ $(= 0.9653)$	M1	Dep on first M1
		$P\hat{L}Q = 74.48$ to 74.9	A1ft	ww 2 marks
		(ii) (0)19.48 to (0)20	B1ft	Their (c)(i) – 55
	(d)	(i) 2130 or 9 30pm	B1	Not 09 30 (pm)
		(ii) $\sin 50 = \frac{x}{17}$ or $\sin Q = \frac{x}{QL}$	M1	
		x = 12.9 to 13.1 (km)	A1 [12]	

© UCLES 2010

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2010	4024	22

10	(a)	<i>n</i> =	4 22, 20, 42	B2	After B0, 4 correct values SC1
		<i>n</i> =	5 26, 30, 56		
	(b)	(i)	4 <i>n</i> + 6	B1	Accept $2(2n+3)$ or $4 \times n + 6$
		(ii)	$n^2 + n$	B1	Accept $n(n+1)$ or $n \times n + n$
		(11)		21	
	(c)	$n^{2} + (n + 1)$	5n+6 (2)(n+3)	M1 A1	Adds their expressions for (b)(i) and (b)(ii) Factorises – answer given NB: Alternative complete methods can score M1A1
	(d)	156		B1	r
	(e)	(i)	((k+2)(k+3) = 306) $k^2 + 5k + 6 = 306$	M1	
			$k^2 + 5k - 300 = 0$	A1	
		(ii)	15	B1	
			-20	B1	SC1 for –15 <u>and</u> 20
		(iii)	66	B1ft[12]	Their positive integer k substituted into their (b)(i)
11	(a)	(i)	Correct scales <u>and</u>	SW1	
			Correct widths (2, 2, 5, 5, 10) Correct heights (6, 9, 8.4, 5.6, 4)	H2	3 or 4 correct heights H1
		(ii)	21 or 20	B1	
		(iii)	$\frac{5}{7}$ cao	B1	
		(iv)	$\frac{132}{870}, \frac{22k}{145k}$	B2	SC1 for $\frac{132}{900}$, $\frac{11k}{75k}$ or 0.147
			or 0.15(0) to 0.152		or $\frac{12 \times 11}{30 \times 29}$ or $\frac{132}{870}$ seen
	(b)	(i)	$\frac{7}{60}$ cao	B1	
		(ii)	60	B2	After B0, 35% = 21 seen SC1
		(iii)	8	B2	SC1 for either 15,21 and 7 seen
				[12]	or 48° or $13\frac{1}{3}$ % seen

	Page 7 Mark Scheme: T		eachers'	version	Syllabus	Paper	
		GCE O LEVEL		- May/Jur	ne 2010	4024	22
					·	·	
12	(a)	(i)	15	P2	After P0, $\sqrt{9^2 + 1}$	2 ² P1	
		(ii)	$678 - 679 (\text{cm}^2)$	S2	After S0, $\pi \times 9 \times$	their $15 + \pi \times 9^2$ S1	l
		(iii)	$1017 - 1020 \text{ (cm}^3\text{)}$	V2	After V0, $\frac{1}{3} \times \pi >$	$\times 9^2 \times 12 \text{ V1}$	
	(b)	(i)	4 cm	B1			
		(ii)	10 cm	B1			
		(iii)	18.8 – 18.9 (cm)	C2	After C0, $\pi \times 3 \times$	2 C1	
		(iv)	979 – 983 (cm ³)	W2	After W0, $\frac{26}{27} \times t$	heir 1018 or	
				[12]	their $1018 - \frac{1}{3}\pi 3^2$	\times their 4 W1	

MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

4024 MATHEMATICS (SYLLABUS D)

4024/21 Paper 21, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2010	4024	21

Section A

Qu		Answers	Mark	Comments
1	(a)	f(7) = 1 as final answer	B1	
	(b)	$\frac{t-2}{5} = t$ $t = -\frac{1}{2}$	M1 A1	Forms an equation in <i>t</i> and attempts to solve
	(c)	Attempt to make <i>x</i> the subject $f^{-1}(x) = 5x + 2$	M1 A1 [5]	SC1 for $(x =)5y + 2$
2	(a)	$\frac{66-48}{48}$ (× 100)	M1	
		37.5%	A1	
	(b)	130% oe soi	M1	
		$\frac{19.5}{1.3}$ o.e	M1	
		(\$)15	A1	
	(c)	(i) \$88	B1	
		(ii) \$79.20	B1√ft	
		\$2.8(0) cao	B1 [8]	Accept –2.8
3	(a)	Rectangle 13 cm by 8 cm	B1	
	(b)	(i) Constructs perpendicular bisector of ZV	B1	to cross rectangle
		Arc of circle radius 9 centre X	B1	across rectangle
		(ii) Labels the correct region	B1	No need to shade – but must be correct
	(c)	(i) P and Q correctly positioned	B1ft	
		(ii) (a) 42 ±1 m cao	B1	Dep on correct P and Q
		(b) 107° (±2°) cao	B1 [7]	

© UCLES 2010

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2010	4024	21

4	(a)	$\frac{4(2x-1) - 3(x+3)}{(x+3)(2x-1)}$	M1		Single fraction. Brackets not essential. Multiplies the first fraction by $(2x - 1)$ and the second fraction by $(x + 3)$
		$\frac{8x - 4 - 3x - 9}{(x + 3)(2x - 1)}$	M1		Multiplies out the numerator with at least 1 pair of terms correct
		$\frac{5x-13}{(x+3)(2x-1)}$ oe as final answer	A1		
	(b)	Squares both sides of the equation $h^2 = 2n$	M1		
		$m = \frac{\kappa^2 - 5n}{2l}$ as final answer	A1		
	(c)	For num $\frac{p \pm \sqrt{q}}{r}$			
		p = 4 and $r = 6$	B1		s.o.i. or used
		$q = 208 \text{ or } \sqrt{q} = 14.4$	B1		
		x = 3.07, x = -1.74 Final answers	B1 B1	[9]	SC1 for both 3.0 to 3.1 and -1.7 to -1.74 seen
5	(a)	(i) $p = 0.5, q = 0.2$ r = 0.3	B1 B1		
		(ii) (a) 0.25	B1		
		(b) 0.5×0.2 seen 0.2	M1 A1		
	(b)	(i) 17	B1		
		(ii) $78 - 54$ soi x = 8	M1 A1	[8]	Can be implied by $x + 2x + 54 = 78$
6	(a)	Either 136° or 44° correct	B2		After B0, allow SC1 for $A\hat{C}O = 22^\circ$, $A\hat{B}C = 68^\circ$,
		Other one correct	B1ft		$AEC = 68^{\circ}$ or for sum = 180° .
	(b)	$A\widehat{B}C = 68^\circ, \ B\widehat{A}C = 44^\circ \text{ and}$	B1		
		$B\hat{C}A = 68^{\circ}$			_
		Isosceles triangle	B1	[5]	Dep

© UCLES 2010

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2010	4024	21

7	(a)	Mid value used o.e. Sum of (value × frequency) / 80 3.45 (hours)	M1 M1 A1	
	(b)	73, 78	B1	
	(c)	Correct scale, points correct and smooth curve	S1 P1 C1	Minus 1 each error P1 for 5 plots which could form ogive C1 reasonable curve
	(d)	(i) 3.3 (hours)	B1ft	Read at 40 ft within 0.1
		(ii) Upper quartile and lower quartile used	M1	Upper quartile – 2
		2.5 (hours)	A1ft[10]	ft within 0.1

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2010	4024	21

Section B

Qu	Answers			Mark	Comments
8	(a)	<i>p</i> = -	-2.6 stated	B1	
	(b)	Scal	es	S1	
		Five Smc	e points plotted ft poth curve	P1ft C1	Lost for ruled lines, incomplete, very thick
	(c)	x = 2	2.55 to 2.65	X1	
	(d)	(i)	y = x	L1	
		(ii)	Line drawn and attempt to	M1	
			x = 2.4(0) to 2.5(0)	A1	
	(e)	-4		G1	
	(f)	(i)	Correct line drawn	T1	Tangent of gradient part (e)
		(ii)	(0, 12)	Y1ft	ft from <i>their</i> attempted tangent
		(iii)	y = -4x + 12	E1ft[12]	ft from their gradient and their intercept
9	(a)	(i)	$\frac{90}{360} \times \pi \times 16$	M1	Correct formula and 90° used
			+16 28.56 to 28.6(0) cm	M1 A1	Indep. Attempt to add $2 \times radius$
		(ii)	$\frac{90}{360} \times \pi \times 8^2$	M1	Area of cross-section
			[Their $\frac{90}{360} \times \pi \times 8^2$] × h	M1	Indep. Forms equation
			h = 15.9(0) to 15.92 cm	A1	
	(b)	(i)	(a) $MN = 2x$	B1	
			(b) Area of triangle = $\frac{1}{1}$	M1	Expect justification and a subtraction
			$\frac{1}{2}$ their $(2x \times x)$		
			Area of sector = 16π and Subtraction	A1	
		(ii)	$20(16\pi - x^2) = 800$	M1	Forms equation
			$x^{2} = 10.2$ to 10.3 x = 3.2(0) to 3.21 cm	A1 A1 [12]	Correct method of solution

© UCLES 2010

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2010	4024	21

10			4.400	51	
10	(a)	(i)	140°	BI	
		(ii)	$\frac{6 \times 180 - 4 \times 140}{4}$	M1	Correct method leading to solution
			4		
			or $3 \times 180 - 410$ or $180 - 50$ oe		
			130°	A1	
	(b)	(i)	$\tan 40^{\circ} = \frac{CT}{23} \text{oe}$	M1	
			CT = 19.29 to $19.3(0)$ cm	A1	
		(ii)	73 × 39.3 or 50 × 39.3	M1	Accept $20 + \text{their } CT \text{ for } 39.3$
			$\frac{1}{2} \times 23 \times (\text{their } CT) \text{ or}$	M1	
			$\frac{1}{2}(20+20+\text{their } CT) \times 23$		
			$2640 \text{ to } 2650 \text{ cm}^2$	A1	
		(iii)	10560 to 10600	B1ft	4 × their (b)(ii)
		(iv)	(a) 146 cm 79 cm	B1 B1ft	$40 + 2 \times \text{their (b)(i)}$ rounded up
			(b) 930 to 980 cm^2 cao	B1 [12]	
11	(a)	(i)	$\begin{pmatrix} 6\\-5 \end{pmatrix}$	B1	Accept $\binom{6}{-5}$ but not 6, -5 or (6, -5)
		(ii)	Enlargement	M1	
			Scale factor $\frac{1}{2}$	A1	A1 and A1 not lost if transformation stated, when SC1 SC1 scored
			Centre (4, 1)	A1	
		(iii)	Shear	B1	
		(iv)	y = x (+ c) y = x + 1	M1 A1	Knowing the equation has gradient 1
	(b)	(i)	<i>x</i> -coordinate – <i>q</i> <i>y</i> -coordinate – <i>p</i>	B1 B1	SC1 for $\begin{pmatrix} -q \\ -p \end{pmatrix}$
		(ii)	<i>x</i> -coordinate <i>q</i> <i>y</i> -coordinate – <i>p</i>	B1 B1	SC1 for $\begin{pmatrix} q \\ -p \end{pmatrix}$
		(iii)	$\mathbf{W} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$	B1 [12]	

© UCLES 2010

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2010	4024	21

12	(a)	(i)	p –	q	B1	
		(ii)	$\frac{1}{2}(1)$	$(\mathbf{p} - \mathbf{q}) + \frac{1}{4}\mathbf{p}$	M1	Correct method
			$\frac{3}{4}\mathbf{p}$	$p - \frac{1}{2}\mathbf{q}$ cao	A1	
	(b)	(i)	(a)	$\frac{1}{2} \times 24 \times 17 \times \sin 55^{\circ}$	M1	
				$167 \text{ to } 167.5 \text{ cm}^2$	A1	
			(b)	Attempt at cosine rule $XY^2 = 865 - 816 \cos 55$ 19.9 to 19.93 (cm)	M1 M1 A2	Correct formula and sign and correct algebra soi SC1 for 396 to 397 seen
		(ii)	(a)	$VZ^2 = 15^2 - 6^2$ VZ = 13.7 to 13.75 cm	M1 A1	Value of 6 and correct use of Pythagoras
			(b)	766 cm ³ (Accept 762 – 766)	B1ft [12]	ft $\frac{1}{3}$ × their (b)(i)(a) × their (b)(ii)(a)

MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

4024 MATHEMATICS (SYLLABUS D)

4024/12 Paper 12, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2010	4024	12

Qu	Answers	Mark	Part Marks
1	(a) 0.7	1	
	(b) 60	1	
2	(a) $\frac{11}{35}$	1	
	(b) $\frac{18}{35}$	1	
3	(a) 22	1	
	(b) 1380	1	
4	(a) 10	1	
	(b) $\frac{1}{3}$	1	
5	0.5	2	B1 for two of 50, 0.2 and 4 seen
6	(a) 2.5	1	
	(b) $\frac{p+r}{2}$	1	
7	(a)	1	
	(b) Rectangle, parallelogram or rhombus drawn	1	
8	(a) 81	1	
	(b) 24	1	
9	(a) $2^2 \times 5 \times 7$	1	
	(b) 28	1	
	(c) 42	1	
10	(a) $40 24$	2	C1 for one correct or
			M1 for $\frac{x}{x-16}$ or $\frac{y+16}{y} = \frac{5}{3}$ or $\frac{5}{8}z = \frac{3}{8}z + 16$
	(b) 2.5	1	
11	(a) -1.5	1	
	(b) $\frac{5}{3x+2}$	2	C1 for $\frac{5}{3y+2}$ or $\frac{5}{ax+b}$ with $a = 3$ or $b = 2$ or
			D 1 10f $3xy - 3 - 2x$ of $3yx = 3 - 2y$ of better seen

© UCLES 2010 www.XtremePapers.net

Page 3 Mark Scheme: Teachers' version Sylla					Syllabus	Paper
		GCE O LE\	/EL – May	/June 2010	4024	12
12	(a) $\frac{12}{x^2}$		2	C1 for $\frac{k}{x^2}$ or B1 for $k = 12$ seen or	$y = \frac{k}{r^2}$ with k or k	any number
	(b) 2 −2		1		л	
13	(x =) 5 (y =	=) – 4	3	C2 for one correct wi M1 for a correct meth reaching such as $11x$	th working. nod to eliminate one = k , $hx = 55$, $11y = 1$	e variable, p or qy = -44
14	(a) -2 5.5		1			
	(b) $y = -0.75$	<i>x</i> + 4	2	C1 for $y = -0.75x + c$ B1 for $m = -0.75$ or c point (-8, 10) or (4, 1	or $y = mx + 4$ or x = 4 soi or a line the	rough either
15	(a) 52		1			
	(b) 52		1	Accept their (a) ft		
	(c) 38		1	Accept 90 – their (b)	ft	
16	(a) Correct c	completion with $\frac{4}{10}$,	1			
	$\frac{4}{9}, \frac{6}{9}$ and	d $\frac{3}{9}$				
	(b) $\frac{7}{15}$		2	C2 for a correct ft fro M1 for $\frac{6}{10} \times \frac{5}{9} + \frac{4}{10} \times$	m (a) 3 9	
17	(a) $2p + 3q$		1			
	(b) 2 p + 2 q		1			
	(c) $-2p + q$		1	Accept $3\mathbf{q}$ – their (b)	ft	
18	(a) $\frac{\pi r^2}{6}$		1			
	(b) $2r + \frac{\pi r}{3}$		2	B1 for $\frac{60}{360} \times 2\pi r$ see	en	
19	(a) $\begin{pmatrix} 3 & - \\ 0 & - \end{pmatrix}$	$\begin{pmatrix} 1\\ 1 \end{pmatrix}$	1			
	(b) $\begin{pmatrix} \frac{3}{2} & - \\ \frac{1}{2} & 0 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 0 \end{pmatrix} $ o.e.	2	B1 for $\frac{1}{2}$ or $\begin{pmatrix} 3 \\ 1 \end{pmatrix}$	$\binom{-2}{0}$ or (det =) 2	

© UCLES 2010

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper	
	GCE O LEVEL – May/June 2010	4024	12	

		1	
20	(a) 39	1	
	(b) 14	2	B1 for 46 or 32 seen
	(c) 9	1	
21	(a) (i) $3x(x-4)$	1	
	(ii) $(x+y)(x-2y)$	1	
	(b) $\frac{x}{x-4}$	2	B1 for $x(x + 4)$ or $(x + 4)(x - 4)$ seen
22	(a) 2 500 000	1	
	(b) (i) 395	1	
	(ii) 340	2	B1 for 5.5 seen
23	(a) 34	2	M1 for $\frac{16}{AB} = \cos\theta$ soi
	(b) 480	2	B1 for height of $ABC = 16 \tan \theta$ o.e.
			or for $\frac{1}{2} \times 32 \times \text{their } 34 \times \sin \theta$ or
			M1 for any correct method
24	(a) T with vertices (5, 6), (3, 6) and (3, 2)	2	C1 for two vertices correct or for T same orientation as P and correct size
	(b) Rotation 90° anticlockwise about (0, 0)	2	B1 for Rotation or 90° anticlockwise about (0, 0) oe
	$(c) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	1	
25	(a) 108	1	
	(b) $0.5 - 0.9$ with tangent drawn	2	C1 for $0.5 - 0.9$ or
	at $t = 18$		BT for tangent at $t = 18$
	(c) Correct distance / time graph	2	B1 for curve from (0, 0) to (8, 36) with correct curvature or straight line from (8, 36) to (16, 108ft)
26	(a) Correct triangle	2	B1 if no arcs seen or arcs seen but sides in the wrong order or arcs seen, but only one side the correct length
	(b) Correct region shaded	3	B1 for arc radius 7, centre B B1 for perp. bisector of AB

© UCLES 2010

MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

4024 MATHEMATICS (SYLLABUS D)

4024/11 Paper 11, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2010	4024	11

Qu	Answers	Mark	Part Marks
1	(a) $\frac{13}{12}$ oe	1	
	18		
	(b) $\frac{22}{27}$ oe	1	
2	(a) 9	1	
	(b) 12	1	
3	(a) 63	1	
	(b) $\frac{28}{\pi}$	1	
4	64	2	M1 for $(60 + 20) \div$ (total time)
5	(a) C	1	
	(b) (0)40 ^(°)	1	
6	(a) $x < 3.5$	1	
	(b) 3	1ft	ft from their (a)
7	TRUE TRUE FALSE Valid Example	2	B1 for TRUE TRUE or FALSE with valid example evaluated
8	(a) 49	1	
	(b) 18	1	
9	(a) 6.5	1	
	(b) 6	2	B1 for 7.5 seen
10	(a) (0).012	1	
	(b) 300	1	
	(c) <u>3</u> cao	1	
11	Congruent triangles established	3	M1 for $CO = OD$ or $AO = OB$
	and conclusion	-	M1 for $A\hat{O}C = B\hat{O}D$
			WIT IOF $AUC = BUD$
			A1 for both pairs of equal sides, equal angles, a valid reason and conclusion
12	(a) 1.5 , 6.5	1	
	(b) $x \ge 0, y \ge 4, x \le 3$	2	C1 for two correct or all 3 inequalities consistently wrong, or =

© UCLES 2010 www.XtremePapers.net

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2010	4024	11

13	(a) (400 350)	2	C1 for 750 B1 for 400 or 350 seen
	(b) <u>Total cost</u> (of each family's order).	1	
14	Correct histogram	3	B2 for three correct columns B1 for one correct column SC1 for correct frequency densities
15	(a) 40.81	1	
	(b) (i) 6.9(0)	1	
	(ii) 2.76	2	M1 for their (b)(i) ÷ 2.50
16	(a) 6 8 13	3	C2 for total 27 with their median 8 or C1 8 or total 27 or B1 for 27 seen or M1 for a relevant equation containing such as x and x +7 or y – 7 and y
	(b) 17 cao	1	
17	(a) $y = \frac{36}{x^2}$	2	C1 for $y = \frac{k}{x^2}$ B1 for $k = 36$ seen
			M1 for $y = \frac{k}{x^2}$ seen with any k
	(b) 9 cao	1	
	(c) ±6 cao	1	
18	(a) 50	1	
	(b) 65	1	
	(c) 45	1	
	(d) 225	1	
19	(a) 78	1	
	(b) 1.62×10^{11}	1	
	(c) $5.32(2) \times 10^{21}$	2	C1 for figs 5322 or 5.3×10^{21}
20	(a) 4:25	1	
	(b) 2:5	1	
	(c) 7.5	2	M1 for $\frac{3}{CD} = \frac{2}{5}$ or better

© UCLES 2010

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2010	4024	11

21	(a) 22 – 3n	2	B1 for -3n soi
	(b) (i) $(2x-5y)(2x+5y)$	1	
	(ii) $(5a-2)(x-a)$	2	M1 for the correct extraction of a common factor at any stage
22	(a) Correct distance/time graph	3	B2 for any two correct lines or L ₁ (1010,0) to (a, 6), gradient m, L ₂ (a, 6) to (b, 6) L ₃ (b, 6) to (1100,0) or (c, 0), gradient – m. B1 for a horizontal line at d = 6 or a horizontal line, 14 mins, anywhere or $\frac{6}{20}$ soi
	(b) (i) 10 48	1	
	(ii) 4	1	
23	(a) (i) $t^2 - 4t + 3 = 0$ correctly derived AG	1	Must see $(20t - 5t^2) = 15$
	(ii) 1, 3	2	C1 for one value correct , and no incorrect value given M1 for $(t-1)(t-3)$ oe seen
	(b) 4	2	M1 for $20t - 5t^2 = 0$ or better seen
24	(a) (i) 0.75 oe	2	M1 for $5 - 6x \pm 2 = 2x + 1$ soi
	(ii) $\frac{8}{15}$ oe	2	M1 for $\frac{5t}{2} = \frac{4}{3}$ or better
	(b) $x=2$ $y=-3$	3	C2 for one correct www M1 for elimination or substitution reaching such as 11x = k or $hx = 22$ or $11y = p$ or $qy = -33$

MATHEMATICS (SYLLABUS D)

Paper 2

4024/02

May/June 2009

2 hours 30 minutes

Additional Materials:

Answer Booklet/Paper Electronic calculator Geometrical instruments Graph paper (2 sheets) Mathematical tables (optional)

READ THESE INSTRUCTIONS FIRST

If you have been given an Answer Booklet, follow the instructions on the front cover of the Booklet. Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A

Answer all questions.

Section B

Answer any **four** questions.

Show all your working on the same page as the rest of the answer.

Omission of essential working will result in loss of marks.

You are expected to use an electronic calculator to evaluate explicit numerical expressions. You may use mathematical tables as well if necessary.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 100.

This document consists of **11** printed pages and **1** blank page.

[Turn over

Section A [52 marks]

Answer **all** questions in this section.

1	(a)	Express as a single fraction in its simplest form $\frac{2a}{3} + \frac{3}{2a}$.	[1]		
	(b)	Factorise completely $5b^2 - 10b$.	[1]		
	The points P and Q are $(4, 7)$ and $(8, -3)$ respectively.				
	Find				
		(i) the midpoint of PQ ,	[1]		
		(ii) the length of PQ .	[2]		
	(d)	Solve the equation $3x^2 + 11x - 7 = 0$, giving each answer correct to 2 decimal places.	[4]		
2	(a)	During a 20 week period in 2007, a bank made a profit of \$378 million.			
		(i) Calculate the average profit it made each second.	[2]		
		(ii) During the same 20 week period in 2008, the profit was \$945 million.			
		For this 20 week period, calculate the percentage increase in the profit from 2007 to 2	2008. [2]		
		(iii) Find the ratio of \$378 million to \$945 million. Give your answer in the form $m : n$, where m and n are the smallest possible integers.	[2]		
	(b)	Mary changed 480 euros into dollars. The exchange rate was $\$1 = 0.6$ euros. The bank took, as commission, 2% of the amount that had been changed.			
		Calculate the number of dollars the bank took as commission.	[2]		

4024/O2/M/J/09

4024/O2/M/J/09

[Turn over

[2]

[1]

In the diagram, the 9-sided polygon has 6 angles of x° and 3 angles of y° .

(i) For this polygon, state

(a) the number of lines of symmetry,	[1]
--------------------------------------	-----

- (b) the order of rotational symmetry. [1]
- (ii) (a) Show that the sum of the interior angles of a 9-sided polygon is 1260°. [1]

4

- (**b**) Find an expression for *y* in terms of *x*. [2]
- (c) Given also that y = 12 + x, find x.

In the diagram, the lines *ABC* and *DEF* are parallel. *AE* meets *DB* at *G*. $B\hat{A}E = 24^\circ$, $C\hat{B}E = 66^\circ$ and $B\hat{D}E = 39^\circ$.

Calculate

(b)

(i)	FÊB,	[1]
(ii)	$B\hat{EA}$,	[1]

(iii) $A\hat{G}D$.

© UCLES 2009

4024/O2/M/J/09

4024/O2/M/J/09

[Turn over

Row 1	1	2	1						
Row 2	2	3	2	3	2				
Row 3	3	4	3	4	3	4	3		
Row 4	4	5	4	5	4	5	4	5	4

The diagram shows the first four rows of a pattern of numbers.

The table shows some results obtained from this pattern.

Row number	1	2	3	4	5		n				
Number of numbers in the row	3	5	7	9	р		x				
Product of the first two numbers in the row	2	6	12	20	q		у				
Sum of all the numbers in the row	4	12	24	40	r		Z.				
Middle number in the row	2	2	4	4	S						
(a) Find the values of p, q, r and s.											
(b) Find expressions, in terms	of n , for x	(b) Find expressions, in terms of n , for x , y and z .									

[2]

[3]

[1]

(c) Write down the middle number in Row 101.

6

4024/O2/M/J/09

7

Section B [48 marks]

Answer **four** questions in this section.

Each question in this section carries 12 marks.

- 7 (a) When a solid rectangular wooden block of oak floats, 60% of its height is under water.
 - (i) What fraction of its height is **above** water?
 - (ii) A block of oak has length 60 cm, breadth 50 cm and height *h* centimetres.

It floats with 15 cm of its height under water.

(a) Find the value of *h*.

(b) In the diagram, the shaded region represents part of the surface area of the block that is in contact with the water.

Calculate the **total** surface area of the block that is in contact with the water. [2]

A solid cylinder, made from a different type of wood, floats in water.

The shaded region represents part of the surface of the cylinder that is in contact with the water. The right hand diagram shows the circular cross-section of one end.

The centre of the circle is *O* and the water level reaches the points *A* and *B* on the circumference. Reflex angle $AOB = 220^{\circ}$.

The cylinder has radius 9 cm and length 35 cm.

Calculate

(b)

- (i) the area of the **curved surface** of the cylinder that is in contact with the water, [2]
- (ii) the surface area of **one end** of the cylinder that is in contact with the water, [4]
- (iii) the distance between the water level *AB* and the top of the cylinder. [2]

4024/O2/M/J/09

www.xtremepapers.net

[1]

[1]

8 Answer THE WHOLE of this question on a sheet of graph paper.

The diagram represents a rectangular pond, *ABCD*, surrounded by a paved region. The paved region has widths 1 m and 10 m as shown. The pond and paved region form a rectangle *PQRS*. The area of the pond is 168 m^2 .

- (a) Taking the length of AB to be x metres, write down expressions, in terms of x, for
 - (i) *PQ*,
 - (ii) *BC*,
 - (iii) QR. [2]
- (b) Hence show that the area, y square metres, of the paved region, is given by

$$y = 22 + 11x + \frac{336}{x}.$$
 [2]

(c) The table below shows some values of x and the corresponding values of y.

x	3	3.5	4	5	6	7	8	9
у	167	156.5	150	144.2	144	147	152	р

Calculate *p*.

(d) Using a scale of 2 cm to represent 1 metre, draw a horizontal *x*-axis for $3 \le x \le 9$.

Using a scale of 2 cm to represent 5 square metres, draw a vertical y-axis for $140 \le y \le 170$.

On your axes, plot the points given in the table and join them with a smooth curve. [3]

- (e) By drawing a tangent, find the gradient of the curve at (4, 150).
- (f) Use your graph to find
 - (i) the smallest area of the paved region, [1]
 - (ii) the length of PQ when the area of the paved region is smallest. [1]

4024/O2/M/J/09

www.xtremepapers.net

[1]

[2]

9

9 (a)

In the diagram, BD = 17 cm, CD = 10 cm, BC = 9 cm, $B\hat{A}D = 114^{\circ}$ and $A\hat{B}D = 38^{\circ}$.

Calculate

- (i) AD, [3]
- (ii) $B\hat{C}D$. [3]

(b)

In the diagram, $\overrightarrow{OQ} = \overrightarrow{QS}$, $\overrightarrow{QR} = 2\overrightarrow{PQ}$ and $\overrightarrow{ST} = 2\overrightarrow{RS}$.

$$\overrightarrow{OP} = \mathbf{p}$$
 and $\overrightarrow{PQ} = \mathbf{q}$

(i) Express, as simply as possible, in terms of **p** and/or **q**,

(a) \overrightarrow{OQ} ,	[1]
(b) \overrightarrow{RS} ,	[1]
(c) \overrightarrow{OS} ,	[1]
(d) \overrightarrow{OT} .	[1]
Hence write down two facts about <i>O</i> , <i>P</i> and <i>T</i> .	[2]

(ii)

4024/O2/M/J/09

10 Answer THE WHOLE of this question on a sheet of graph paper.

The waiting times of 50 people at a supermarket checkout were recorded. The results are summarised in the table below.

Time (<i>t</i> minutes)	$1 < t \leq 3$	$3 < t \le 4$	$4 < t \le 5$	$5 < t \le 7$	$7 < t \leq 9$	$9 < t \le 12$
Number of people	4	10	8	14	8	6

(a)	Using a scale of 1 cm to represent 1 minute, draw a horizontal axis for waiting times between 0 and 12 minutes.	
	from 0 to 10 units	
	On your axes, draw a histogram to illustrate the distribution of waiting times.	[3]
(b)	In which class does the upper quartile lie?	[1]
(c)	Calculate an estimate of the mean waiting time.	[3]
(d)	One person is chosen, at random, from the 50 people.	
	Write down the probability that this person waited	
	(i) less than 1 minute,	[1]
	(ii) more than 5 minutes.	[1]
(e)	A second person is now chosen, at random, from the remaining 49 people.	
	Expressing each answer as a fraction in its lowest terms, calculate the probability that	
	(i) both people waited more than 5 minutes,	[1]
	(ii) one person waited more than 5 minutes and the other waited 5 minutes or less.	[2]

4024/O2/M/J/09

11 (a)
$$\mathbf{A} = \begin{pmatrix} 0 & 3 \\ -1 & x \end{pmatrix}$$
 $\mathbf{B} = \begin{pmatrix} 1 & -1 \\ \frac{1}{3} & 0 \end{pmatrix}$

Express $2\mathbf{A} - 3\mathbf{B}$ in terms of *x*. (i)

[2]

[2]

Given that $\mathbf{A} = \mathbf{B}^{-1}$, find the value of *x*. (ii)

(b)

(iii)	L is the point (k , 2). T maps L onto (8 , 2).	
	(a) Find the value of k .	[1]
	(b) Find the coordinates of $ET(L)$.	[2]

4024/O2/M/J/09

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

4024/O2/M/J/09

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

	CANDIDATE NAME		
	CENTRE NUMBER	CANDIDATE NUMBER	
* 9 1	MATHEMATICS	(SYLLABUS D)	4024/01
4	Paper 1		May/June 2009
٥ N			2 hours
0	Candidates answ	ver on the Question Paper.	
	Additional Mater	ials: Geometrical instruments	
*	READ THESE I	NSTRUCTIONS FIRST	

Write your Centre number, candidate number and name on all the work you hand in.Write in dark blue or black pen.You may use a pencil for any diagrams or graphs.Do not use staples, paper clips, highlighters, glue or correction fluid.DO **NOT** WRITE IN ANY BARCODES.

Answer **all** questions.

If working is needed for any question it must be shown in the space below that question. Omission of essential working will result in loss of marks.

NEITHER ELECTRONIC CALCULATORS NOR MATHEMATICAL TABLES MAY BE USED IN THIS PAPER.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 80.

For Examiner's Use	

This document consists of **20** printed pages.

UNIVERSITY *of* **CAMBRIDGE** International Examinations

[Turn over

NEITHER ELECTRONIC CALCULATORS NOR MATHEMATICAL TABLES MAY BE USED IN THIS PAPER.

1 (a) Evaluate $17 - 5 \times 3 + 1$.

Answer (a)[1]

For

Examiner's Use

(b) Express 0.82 as a percentage.

Answer (b) % [1]

2 Express as a single fraction in its lowest terms,

(a) $\frac{8}{9} \times \frac{3}{4}$,

Answer (a)[1]

(b) $\frac{3}{4} - \frac{2}{3}$.

Answer (b) [1]

4024/01/M/J/09

3	(a)	Write down the two cube numbers between 10 and 100.	For Examiner's Use
	(b)	Answer (a)[1] Write down the two prime numbers between 30 and 40.	
		Answer (b)[1]	
4	(a)	Factorise $x^2 - y^2$.	
	(b)	<i>Answer</i> (<i>a</i>)[1] Evaluate $102^2 - 98^2$.	
		Answer (b)[1]	

4024/01/M/J/09
5	(a)	Evaluate	$0.5 \times 0.007.$			For Examiner's Use
	(b)	Evaluate	$\frac{1}{1.25}$ as a decimal.	Answer	(<i>a</i>)[1]	
6	(a)	Write dow	n all the factors of 18.	Answer	(<i>b</i>) [1]	
	(b)	Write 392	as the product of its prime factors.	Answer	(<i>a</i>)[1]	
				Answer	(<i>b</i>) [1]	

4024/01/M/J/09

7	(a)	Simplify $4a^3 \times a^2$.	For Examiner's Use
	(b)	Answer (a)	
		Answer (b)	
8	(a)	Convert 0.8 kilometres into millimetres.	
	(b)	Answer (a) mm [1] Evaluate $(6.3 \times 10^6) \div (9 \times 10^2)$, giving your answer in standard form.	
		Answer (b)	

5

© UCLES 2009

4024/01/M/J/09

[Turn over

6

© UCLES 2009

9

4024/01/M/J/09

10 Five clocks at a hotel reception desk show the local times in five different cities at the same moment.

For Examiner's Use

LONDO	DN	MOSCOW	SYDNEY	ТОКҮО	NEW YORK
0738		1038	1638	1538	0238
(a) F V	Rosidah ha What is the	s breakfast at 080 local time in Syd	0 in Moscow. ney?		
(b) E H T V	Elias catche He leaves I The flight t What is the	es a plane in Lond London at 11 30 lo ime is 8 hours 10 local time in Nev	lon and flies to New Y cal time. minutes. v York when he lands	Answer (a) York. ?)[1]
				Answer (b)	0 [2]

4024/01/M/J/09

Similar buckets are available in two sizes.The large bucket has height 30 cm and base diameter 16 cm.The small bucket has base diameter 8 cm.

(a) Find the height of the small bucket.

Answer (a) cm [1]

(b) Given that the small bucket has volume 850 cm³, find the volume of the large bucket.

© UCLES 2009

4024/01/M/J/09

www.xtremepapers.net

For Examiner's Use 12 *y* is directly proportional to the square root of *x*. Given that y = 12 when x = 36,

find

(a) the formula for *y* in terms of *x*,

(b) the value of x when y = 10.

4024/01/M/J/09

www.xtremepapers.net

For Examiner's Use

4024/01/M/J/09

tremepapers.net

www.xt

4024/01/M/J/09

www.xtremepapers.net

© UCLES 2009

Answer (a) seconds [1]

For Examiner's Use

 \underline{E}

(b) the mean time taken between the stops,

Answer (b) seconds [2]

(c) the range of times taken between the stops.

Answer (c) minutes seconds [1]

4024/01/M/J/09

15

 A_{-}

4 minutes

The times taken for a bus to travel between five stops A, B, C, D and E are shown below.

4024/01/M/J/09

[Turn over

18	(a)	$ \begin{aligned} \mathscr{E} &= \{ 1, 2, 3, 4, 5 \}, \\ A &= \{ 1, 2, 3 \}, \\ B &= \{ 5 \}, \\ C &= \{ 3, 4 \}. \end{aligned} $	For Examiner's Use
		List the elements of	
		(i) $A \cup C$,	
		Answer $(a)(i)$	
		Answer (a)(ii)[1]	
	(b)	A group of 60 children attend an after school club. Of these, 35 children play football and 29 play hockey. 3 children do not play either football or hockey.	
		By drawing a Venn diagram, or otherwise, find the number of children who play only hockey.	
		Answer (b)[2]	

www.xtremepapers.net

4024/01/M/J/09

In the diagram, $L\hat{M}Q = Q\hat{M}N = M\hat{N}P = P\hat{N}L$.

М

(a) Show that triangles *LMQ* and *LNP* are congruent.

State the name of the special quadrilateral LPRQ.

Р

(b) Show that $M\hat{P}N = M\hat{Q}N$.

Answer (c)[1]

19

4024/01/M/J/09

www.xtremepapers.net

[Turn over

[3]

[1]

L

R

Q

у 5 4 3-2 В A 0 2 3 5 ż -1 -2 3 The diagram shows triangles A and B. (a) The translation $\begin{pmatrix} -3\\2 \end{pmatrix}$ maps ΔA onto ΔC .

On the diagram, draw and label ΔC .

- (b) The rotation 90° clockwise, centre (2, 0), maps ΔA onto ΔD . On the diagram, draw and label ΔD .
- (c) Describe fully the single transformation which maps ΔA onto ΔB .

20 Answer (a), (b)

For Examiner's Use

4024/01/M/J/09

www.xtremepapers.net

[1]

[2]

 $\frac{1}{7}x$

Ġ

21	The <i>n</i> th term of a sequence is $\frac{4}{n^2}$.							
	(a)	Write down the first three terms of the sequence, expressing each term in its simplest form.	Use					
		Answer (a), ,						
	(b)	The <i>k</i> th term in the sequence is $\frac{1}{100}$.						
		Find the value of <i>k</i> .						
		$Answer (b) k = \dots \dots$						
	(c)	of <i>m</i> .						
		Answer (c) $m =$						

[Turn over

ABCDEF represents an L-shaped piece of glass with AB = AF = 30 cm and CD = 15 cm. The glass is cut to fit the window in a door and the shaded triangle *DEG* is removed. DG = 13 cm and EG = 5 cm.

(a) Show that DE = 12 cm.

22

Answer (a)	
	•••••
	[1]

4024/01/M/J/09

www.xtremepapers.net

For Examiner's Use

- (b) For the remaining piece of glass *ABCDGF*, find
 - (i) its perimeter,

For Examiner's Use

Answer (b)(i) cm [2]

(ii) its area.

Answer (b)(ii) cm^2 [2]

(c) State the value of $\cos D\hat{G}F$.

Answer (c)[1]

[Turn over

4024/01/M/J/09

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

4024/01/M/J/09

<u>www.xtremepapers.net</u>

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

MARK SCHEME for the May/June 2009 question paper

for the guidance of teachers

4024 MATHEMATICS

4024/02

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2		Mark Scheme: Teachers' ver	Syllabus	Paper		
			GCE O LEVEL – May/June 2	009		4024	02
				1		 I	
1	(a)		$\frac{4a^2+9}{6a}$ final answer	B1	1		
	(b)		5b(b-2) final answer	B1	1	Condone missing final brack After $0 + 0$ give sc1 for <u>b</u> correct forms seen.	
	(c)	(i)	(6, 2)	B1	1	Condone missin	g brackets
		(ii)	$\sqrt{(+4)^2 + (+10)^2}$	M1			
		(11)	$\gamma(\pm 4) + (\pm 10)$ 10.7 to 10.8	A 1	2	Accept $2\sqrt{29}$	
			10.7 to 10.8	AI	2	Accept 2729	
	(d)		For numerical $\frac{p \pm (or + or -)\sqrt{q}}{r}$ $p = -11 \text{ and } r = 6 \text{ (or } 2 \times 3)$ $q = 205 \text{ or } \sqrt{q} = 14.3 \text{ to } 14.32$	B1 B1		Completing the s B1 for $\frac{-11}{6}$; B1 dep. on correct <u>used</u>	for $\sqrt{\frac{205}{36}}$ oe formula s.o.i or
			0.55 -4.22	B1 B1	4	If final $B0 + B0$ sc1 for 0.5 to 0.6 -4.22; or for an given to 2 d.p.	then 6 AND –4.2 to 1y two answers
2	(a)	(i)	Figs 378/the product of at least 2 of 20, 24, 7 and 60	M1			
			\$31.25	A1	2	Accept $$31.2 \rightarrow$ \$0.000 031 2 \rightarrow million;	\$31.3 \$0.000 031 3
		(ii)	945 - 378 945	M1		78 125 -	- 31 25
		()	$\frac{312}{378} \times 100$ or $\frac{312}{378} \times 100$			Accept $\frac{70.120}{31.2}$	$\frac{51125}{25} \times 100$
			150% cao	A1	2		
		(iii)	2:5 or $m = 2, n = 5$	B2	2	sc1 for partial	simplification
						126:315, 54:135 14:35, 6:15; or or 5:2 or 2m:5m	, 42:105, 18:45, for $\frac{2}{5}$, or 1:2.5,
	(b)		$\frac{480}{0.6} \times \left(\frac{2}{100} = 16\right)$	M1			
			16 cao	A1	2	sc1 for 9.6(eu	ros) or (\$)800
					[8]	50011.	
	•		·			•	

Page 3		je 3	Mark Scheme: Teachers' version			Syllabus	Paper	
			GCE O LEVEL – May/June 2009			4024	02	
3	(a)	(i)	$\tan x = \frac{11}{4}$ 70 to 70.02	M1 A1	2	For any <u>com</u> allow appropria marks. sc1 for 19.9 to 2	<u>plete</u> methods ate M and A 0	
		(ii) (a) (b)	$\sin 28 = \frac{4}{PX} \text{ or } \frac{PX}{(\sin 90)} = \frac{4}{\sin 28}$ 8.5 to 8.525 $d = \frac{4}{\tan 28}, \text{ or } PX \cos 28, \text{ or } \frac{4\sin 62}{\sin 28}$	M1 A1 M1	2	GRADIAN ANS (i) 77.80 sc1 for 22.2 (ii) (a) 9.39 (b) 8.50 (let	SWERS or 12.2 ading to 2.5)	
			or $\sqrt{PX^2 - 4^2}$ 7.5 to 7.6 11 - d (= 3.4 to 3.5)	A1 M1	3	or 7.77 from Sine Rule (leading to 3.23)		
	(b)		$r^{3} = \frac{96}{\frac{4}{3}\pi}$ or 22.9 2.84 to 2.841	M1 A1	2			
4	(a)	(i) (a) (b)	3 (lines of symmetry) order 3	B1 B1	1			
		(ii) (a)	Use of $(9-2) \times 180$ etc.	M1	1	AG. Allow if but not if quoted	140° calculated,	
		(b)	6x + 3y = 1260 oe y = 420 - 2x oe isw	B1 B1	2	The second B n	nark implies the	
		(c)	Sensible attempt at solving for <i>x</i> or <i>y</i> $x = 136$	M1 A1	2	first.		
	(b)	(i)	$\angle FEB = 114^{\circ}$	B1	1			
		(ii)	$\angle BEA = 42^{\circ}$	B1	1			
_		(iii)	$\angle AGD = 63^{\circ}$	B1	1 [10]			
5	(a)	(1) (a)	$\frac{1}{50}$, 0.02 cao	RI	1	Accept negative	8	
		(b) (c)	$\frac{1}{2} \times (8+4) \times 200$ oe 1200 m 5 m/s	M1 A1 B1	2			
		(ii)	$150u = \frac{1}{2} \times 13 \times 150 \ (= 975) \ \text{oe}$	M1				
			$u = 6\frac{1}{2}$	A1	2	$\sqrt{4} + \frac{1}{2}$ (their 5)	,	

Page 4		e 4	Mark Scheme: Teachers' ver	Syllabus	Paper		
			GCE O LEVEL – May/June 2009			4024	02
	(b)	(i)	195 m	B 1	1		
		(ii)	24.5 or (25.4 to 25.5) seen	B 1			
			Distance	M1			
			7 64 to 7 65	A 1	3	N P ¹⁹⁰ - 76	coores the M1
			1.04 10 1.05	Π	5	N.B. $\frac{1}{25} = 7.0$	scores une wit
					[10]	only	
6	(a)		p = 11 $a = 30$				
			r = 60		_		
			s = 6 all four	B2	2	sc1 for 2 or 3 co	rrect
	(h)		y = 2y + 1 or	D 1		In (b) account a	my unginentified
	(0)		$\begin{array}{l} x = 2n + 1 \text{oe} \\ y = n(n + 1) \text{oe} \end{array}$	BI R1		form but 1 on	ce if not given
			y = n(n+1) oc $z = 2n(n+1)$ or $\sqrt{2} \times v$	B1	3	explicitly	ee, ii not given
				21	C	•	
	(c)		102	B 1	1		
					[6]		
7	(a)	(i)	$\frac{2}{5}$ oe fraction	B 1	1	Not 40%; 0.4	
			5				
		(ii) (a)	h = 25	B1	1		
		(b)	$2(50 \times 15 + 60 \times 15) + 50 \times 60$ 6300 cm ²		2	col for 2200 or f	$For 0.200 \text{ am}^2$
				А	2	SC1 101 5500 01 1	01 9300 cm
	(b)	(i)	$\frac{220}{2} \times 2\pi \times 9 \times 35$	M1			
		.,	³⁶⁰ 1208 to 1210	A1	2		
		(ii)	220 × π × 0^2 (- 155 50)	N/T1		POSSIBI E GRA	AD ANSWERS
		(11)	$\frac{1}{360} \times \pi \times 9$ (-155.50)	MI M1		(ii) 188 to 188.3	
			$\frac{1}{2}$ × 9 × sin140 (= 26.03)	IVII		from $\frac{1}{2} \times 9^2 \times \sin^2 \theta$	$140 (= 32.7 \dots);$
			181 to 182	A2	4	177 to 178	
						from 81 \times sin	$70 \times \sin 20$ (=
						(iii) 4.9 from c	os70: 6.2 from
						sin20	
						sc1 for 4.08 o	or for 2.7
						If A0, then	
						sc1 tor 155 to 25.9 to 26.1 seer	156 seen or for
		(iii)	$d = 9 - 9\cos 70$ = 5.02 to 5.03	M1	2	$\frac{1}{2}$	2.08 scor
			- 3.92 10 3.93	AI	∠ [12]	3801 101 3.07 10	5.06 seen
					[14]		

Page 5		je 5	Mark Scheme: Teachers' ver	Syllabus	Paper		
			GCE O LEVEL – May/June 2	009		4024	02
8	(a)	(i)	PQ = (x+2) m			If AB used inste	ad of x , -1 once
		(ii)	$BC = \frac{168}{x}$				
		(iii)	$QR = \frac{168}{x} + 11 \sqrt{BC} + 11$ all 3 (condone 10 + 1 for 11)	B2	2	sc1 for 1 or 2 co	rrect
	(b)		Area = $(x + 2) \left(\frac{168}{x} + 11\right) - 168$ or $\sqrt{PQ} \times QR - 168$ as an expression in x 336	M1		or $(x + 2) + 10(x + 2) + 2$ $\frac{168}{x}$ oe	
			correct working to $22 + 11x + \frac{550}{x}$	A1	2	Answer given	
	(c)		$p = 158 \text{ to } 158 \frac{1}{3}$	B1	1		
	(d)		Correct scales	S 1		Condone reve	rsed axes, if
			7 correct plots (ignore $x = 9$) within 1 mm	P1		Accept if curve correct points	e goes through
			Smooth curve	C1	3	Not grossly thi lines Ignore curve for	ck; no straight $x < 3$ and $x > 8$
	(e)		Clear attempt to draw tangent at $(4, 150)$ gradient = -6 to -12	T1 G1	2	Accept "integer"	' fractions
	(f)	(i)	$143 \leq \text{answer} < 144$	B1	1		
		(ii)	7.4 to 7.6	B1	1 [12]		
9	(a)	(i)	AD = 17	M1	[**]		
			$\sin 38 \sin 114$ $AD = 17 \times \frac{\sin 38}{\sin 114}$	M1 dep.	2	GRADIAN ANSWERS	
		(ii)	11.4 to 11.5 $17^2 = 9^2 + 10^2 \pm (2) \times 9 \times 10 \cos x$ or $\cos x = \pm [(9^2 \pm 10^2 - 17^2)/(2) \times 9 \times 10])$	AI M1	3	(i) 9.7 to 9.8 (ii) 140.9 to 141	
			$\cos C = \frac{10^2 + 9^2 - 17^2}{2 \times 9 \times 10} = (-0.6)$	A1			
			126 to 127	A1	3		

	Page 6		Mark Scheme: Teachers' version			Syllabus	Paper
			GCE O LEVEL – May/June 2	009		4024	02
	(b)	(i) (a)	$\overrightarrow{OQ} = \mathbf{p} + \mathbf{q}$	B 1	1	In (b) (i), -	-1, once, for
		(b)	$\overrightarrow{RS} = \mathbf{p} - \mathbf{q} \sqrt{(\mathbf{a})} - 2\mathbf{q}$	B 1	1		0WC15
		(c)	$\overrightarrow{OS} = 2\mathbf{p} + 2\mathbf{q} \sqrt{2} \times (\mathbf{a})$	B1	1		
		(d)	$\overrightarrow{OT} = \mathbf{4p}$	B1	1		
		(ii)	(O, P and T are) collinear oe OT = 4OP oe	B1 B1	2 [12]	Marks in (ii) correct (i) (d)	are dep on a
10	(a)		Correct scales and axes Correct bases (width + position) Heights (2), 10, 8, 7, 4, 2	S1 B1 H1	3	Condone reve clearly labelled	rsed axes if
	(b)		$7 < t \leq 9$	B1	1		
	(c)		$(4 \times 2) + (10 \times 3.5) + (8 \times 4.5) + (14 \times 6) + (8 \times 8) + (6 \times 10.5)$ (= 290)	M1		8, 35, 36, 84, 64 Condone up to 3	, 63 slips
			÷ 50 5.8	M1 A1	3	Indep of first M	
	(d)	(i)	0	B1	1	Condone $\frac{0}{50}$, not	ne, nil
		(ii)	$\frac{14}{25}$ oe 0.56	B1	1		
	(e)	(i)	$\frac{54}{175} (= \frac{14}{25} \times \frac{27}{49})$ (0.308 to 0.309)	B1	1	In (e), -1, once, not in lowest decimal form	for any answer terms, or in
		(ii)	$\frac{88}{175} \ (= 2 \times \frac{14}{25} \times \frac{22}{49}) (0.502 \text{ to } 0.503)$	B2	2	sc1 for $\frac{44}{175}$ (0.2)	251 to 0.252)
11	(a)	(i)	$\begin{pmatrix} -3 & 9 \\ -3 & 2x \end{pmatrix}$	B2	2	sc1 for 3 correct	elements
		(ii)	$\mathbf{AB} = \begin{pmatrix} 1 & 0 \\ -1 + \frac{x}{3} & 1 \end{pmatrix} \text{ or } \mathbf{BA} = \begin{pmatrix} 1 & 3 - x \\ 0 & 1 \end{pmatrix}$				
			or $\mathbf{B}^{-1} = \begin{pmatrix} 0 & 3 \\ -1 & 3 \end{pmatrix}$ oe	B1		e.g. $3\begin{pmatrix} 0 & 1\\ -\frac{1}{3} & 1 \end{pmatrix}$,	(0.33 or better)
			<i>x</i> = 3	B1 dep.	2		

Page 7		Mark Scheme: Teachers'	version		Syllabus	Paper
	GCE O LEVEL – May/June 2009				4024	02
(b)	(i) (a) (b)	SF = -2 Centre is (1, 2)	B1 B2	1 2	B1 for each coor	rd. sc1 for $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$
	(ii)	Shear, x-axis inv., SF = 2	B1 B1	2	Mention of a 2 nd loses both marks	^d transformation
	(iii) (a)	$ \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} k \\ 2 \end{pmatrix} = \begin{pmatrix} k+4 \\ 2 \end{pmatrix} $				
	(b)	k = 4 ET(L) = E((8, 2)) = (-13, 2)	MA1 B2	1 2 [12]	sc1 for (-2.5, 2)	

MARK SCHEME for the May/June 2009 question paper

for the guidance of teachers

4024 MATHEMATICS

4024/01

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2009	4024	01

		Mark scheme details	Part Marks	Comments	Sub Marks
1	(a)	3	1		
	(b)	82	1	Here and elsewhere, ignore superfluous zeros.	
2	(a)	$\frac{2}{3}$ cao	1		
	(b)	$\frac{1}{12}$ cao	1		
3	(a)	27, 64	1	Accept 3^3 , 4^3 if 27, 64 seen. Ignore the additional cube number 125	
	(b)	31, 37	1		
4	(a)	(x-y)(x+y)	1		
	(b)	800	1	(102 - 98)(102 + 98) must be evaluated	
5	(a)	(0).0035	1	Accept standard form.	
	(b)	(0).8	1		
6	(a)	1,2,3,6,9,18	1	Condone embellishments such as $2 \times 9 = 18$ etc. if all the correct factors seen. Missing factors or incorrect factors seen gets 0.	
	(b)	2 ³ ×7 ²	1	Accept other forms such as $2 \times 2 \times 7^2 \times 2$ but ignore = 392 Factor Tree not sufficient.	
7	(a)	4 <i>a</i> ⁵	1		
	(b)	$3x^2 + 13x + 6$	2 *	Condone further "simplification" www and solution of quadratic equation $3x^2 + 15x - 2x + 6$ or better seen	M1
8	(a)	800 000	1	Accept standard form. Condone notation such as 800.000.	
	(b)	7×10^3	2	Any correct equivalent using fig. 7	C1

	Page 3		Mark Sche	me: Tea	eachers' version Syllabus Pa			iper
			GCE O LE	VEL – M	ay/June 2009	4024	(01
		1						
9	(a)	(i) 54 to	56	1				
		(ii) 28 to	o 30	1				
	(b)	Mathem	atics + valid reason	1	e.g. because median is 1 stated. because the curve for of/higher than the curve for Comparisons at arbitrarily 0	ower or both me Maths is to the or English. y chosen points w	dians e left vill be	
10	(a)	14 00		1	Condone embellishments.			
	(b)	14 40		2 *	Accept 2 40 p.m .			
					19 40 ,(0)7 40 (p.m.) , (0) seen	06 30 (a. m.) or (0)2 40	B1
11	(a)	15		1				
	(b)	6 800		2 *	Ratio of corresponding lea		B1	
12	(a)	$(\pm)2\sqrt{x}$		2 *	$k\sqrt{x}$ or using $y = k\sqrt{x}$ NB for $k=2$ seen	C or M, must be	e k or	C1 M1 B1
	(b)	25 cao		1				
13	(a)	3		1				
	(b)	2		1				
	(c)	1		1				
14	(a)	36		1	Degree sign optional			
	(b)	18		1	Accept ½(a) ft			
	(c)	108		1	Accept 90 + (b) ft			
	(d)	72		1	Accept 180 – (c) or 90 – (b) ft		

	Page 4		Mark Sche	Syllabus	Paper					
			GCE O LE	EVEL – M	ay/June 2009	4024	01			
	1									
15	(a)	9 (minut	tes) 20 (seconds)	1						
	(b)	2 (minut	tes) 20(seconds) cao	2 *	$\Sigma t \div 4$		M1			
	(c)	2 (minut	tes) 45 (seconds)	1						
16	(a)	- 8		1						
	(b)	-1		1						
	(c)	$\frac{12-x}{5}$ oe	(e.g. asc)	2	$\frac{12-y}{5}$ oe					
		5			or $a + bx$ with $a = \frac{12}{5}$, $b \neq b$	h a = $\frac{12}{5}$, b \neq 0, or a \neq 0, b = $-\frac{1}{5}$ or				
					$\frac{x-12}{5}$, j	SC1			
17	(a)	1.5 oe		2 *	e.g. $\frac{3}{2}$, 1 2/4					
					9x - 6 = 5x		M1			
	(b)	2,3,4		2 *	1.5 < y < 5 or 1.5< <i>y</i> and <i>y</i> oe but must be <i>y</i> .	5 < y < 5 or $1.5 < y$ and $y < 5$ separately. but must be <i>y</i> .				
18	(a)	(i) 1,2,3	,4	1	Condone extra brackets 3 repeated is 0.					
		(ii) 1,2		1						
	(b)	22		2 *	(35 - x) + x + (29 - x) + 3 or $(35 - x)$, x, $(29 - x)$, 3 Venn Diagram	= 60 or better 3 correctly placed in	a M1			
					28,7,22,3 in diagram		SC1			

	Page 5		Mark Scheme: Teachers' version Syllabus			Syllabus	Paper	
			GCE O LE	VEL – M	ay/June 2009	4024	01	
19	(a)	$LM = LM$ $\hat{L} \text{ is con}$ $L\hat{M}Q =$ Remaining conclusion or acception of the second s	V stated mmon or $L\hat{N}P$ stated ng angle pair and on – congruent stated t ASA.	**M1 M1 A1	For both M's, accept if clear on a diagram. Independent But 0 if measured. M & Dependent on M1 + M1 wrong case quoted if "Co	and www. Cor	N ndone	
	(b)	$\hat{MPN} = 180 - \hat{LPN}$ and $\hat{MQN} = 180 - \hat{LQM}$ seen or $\hat{PRM} = \hat{QRN}$ or $\hat{QMN} = \hat{PNM}$ and $\hat{QNM} = \hat{PMN}$ with convincing conclusion.		**	This mark can be earn diagram.	ned for a convi	ncing	
				M1	Not available if dependen	t on measured ang	gles	
	(c)	Kite		1				
20	(a)	ΔC : (-1,	,3),(1,3),(1,4)	1	Plotting points in (a) and tolerance, judged by eye.	d (b): allow the Is the intention clo	usual ear?	
	(b)	ΔD : (3,	0), (3,-2), (4,-2)	2	Two vertices correct or a 90° clockwise rotatio	n	C1	
	(c)	Reflection (in the line) $x = 1$		2	Dependent on only one transition $x = 1$	ansformation state seen	ed.	
21	(a)	4, 1, $\frac{4}{9}$		1	Accept 0.4 if $\frac{4}{9}$ seen.			
	(b)	20		2 *	$\frac{4}{k^2} = \frac{1}{100}$ soi	M1		
	(c)	26		2 *	$25 4/m^2 < or = 0.0064$		C1 M1	

Page 6			Mark Sche	me: Tea	achers' version Syllabus Pa				
			GCE O LE	VEL – M	ay/June 2009	4024		01	
	-								
22	(a)	Either $\sqrt{12}$ or 12 use	$\sqrt{13^2 - 5^2} = 12$ seen ed in verification	1	AG so www essential				
	(b)	(i) 116		2 *	30 + 30 + (30 -12) + 15 + Condone one omission or 120	- 13 + (15 –5) soi error		M1 SC1	
		(ii) 690		2 *	Methodically correct atten relevant areas required e.g. $(30 - 12) \times 15$, $30 \times$ soi	ll the 2×5	M1		
	(c)	$-\frac{5}{13}$		1	Condone embellishments				
23	(a)	200		1	Throughout, allow the usu eye	ual tolerance judg	ed by		
	(b)	BC = 6.3 and AC	5 cm = 5.1 cm	2	Either C due West of B or $\hat{CAN} = 150^{\circ}$			C1	
	(c)	AD = BI	AD = BD = 6 cm						
	(d)	ABE = 1	0 cm	2	E lies on AB or AB produ	uced or $AE = 10$ cm	n	C1	

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

CANDIDATE NAME		
 CENTRE NUMBER	CANDIDATE	
MATHEMATICS ((SYLLABUS D)	4024/22
Danar 2		Mary/June 0044
raper z		May/June 2011
rapei z		May/June 2011 2 hours 30 minutes
Candidates answ	er on the Question Paper.	2 hours 30 minutes

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Section A

Answer **all** questions.

Section B

Answer any **four** questions.

If working is needed for any question it must be shown in the space below that question.

Omission of essential working will result in loss of marks.

You are expected to use an electronic calculator to evaluate explicit numerical expressions.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 100.

This document consists of 24 printed pages.

www.XtremePapers.net

UNIVERSITY of CAMBRIDGE International Examinations

[Turn over

2

Section A [52 marks]

Answer **all** questions in this section.

1 (a) Express as a single fraction in its simplest form

(i)
$$\frac{1}{2x} - \frac{2}{5x}$$
,

Answer[1]

(ii)
$$\frac{4}{x} + \frac{7}{x-3}$$

Do not write in this margin

4024/22/M/J/11

4024/22/M/J/11

www.XtremePapers.net

[Turn over

2 (a) The formula for the area of a trapezium is $A = \frac{1}{2}h(c+d).$ Do not write in this margin (i) Find an expression for c in terms of A, h and d. **(ii)** 8 The diagram shows a trapezium with dimensions given in centimetres. The perpendicular distance between the parallel lines is 4 cm. The area of the trapezium is 22 cm^2 . Find *c*.

Answer[1]

© UCLES 2011

4024/22/M/J/11

4024/22/M/J/11

© UCLES 2011

[Turn over

5

			B	A	Ν	A	N	A]	Do not write in this margin
The	lette	rs spel	ling the	word BAN	NANA are	written on	six tiles.			
(a)	Finc Give	l the p e your	robabilit answer	y that a til as a fractio	e chosen at on in its sin	t random ł nplest forr	nas the lette n.	er N on it.		
(b)	The Thro The	six til ee tiles first is	es are pl s are cho s placed	aced in a b sen at rand in Position	bag. lom withou n 1, the sec	at replacer ond in Pos	Answ ment. sition 2 and	er	n Position	[1] 3.
	(i)	Find Give	Po the prob your ans	sition 1 ability tha swer as a f	Po t the three t raction in i	osition 2 tiles spell ts simples	– F BAN. t form.	Position 3		
	(ii)	The t Find Give	iles are r the prob your ans	now replac ability tha swer as a f	red and the t the three t raction in i	process is tiles spell ts simples	Answ s repeated. either ANN t form.	er		[2]
							Answ	er		[2]

6

© UCLES 2011

4024/22/M/J/11

www.XtremePapers.net
u _n i	s the	<i>n</i> th term of the sequence 4, 7, 10, 13,		Do
(a)	(i)	Write down an expression, in terms of n , for u_n .		mar
	/••		Answer[1]	
	(11)	Hence find the 20th term of the sequence.		
			Answer[1]	
(b)	v _n i	s the n th term of the sequence 15, 13, 11, 9,		
	(i)	Write down an expression, in terms of n , for v_n .		
			Answer [1]	
	(ii)	w_n is the <i>n</i> th term of another sequence that is obt	tained by multiplying u_n by v_n .	
		Given that $w_n = 17 + kn - 6n^2$, find k.		
 			Answer[1]	

4024/22/M/J/11

www.XtremePapers.net

8

© UCLES 2011

(d)	At what speed does Ravi cycle home? Give your answer in kilometres per hour.	Do not write in this margin
(e)	Answer	
	Answer[1]	
(f)	Salim, Ravi's brother, sets out from home at 1115. He cycles directly to the shopping centre at a constant speed of 15 km/h.	
	Who arrives at the shopping centre first? How many minutes later does his brother arrive?	
	Answer arrives first and his brother arrives minutes later. [2]	

4024/22/M/J/11

[Turn over

6 The pie chart, not drawn accurately, represents the weekly income of the five employees in a small British company in 2009.

Andrew's weekly income is represented by a sector with an angle of 72°. Brian's weekly income is represented by a sector with an angle of 60°.

(a) Andrew's weekly income was £270.

Find the total weekly income of the five employees.

Answer £.....[1]

(b) Calculate Brian's weekly income.

Answer £.....[1]

(c) Carol's weekly income was £405.

Calculate the angle of the sector representing Carol's weekly income.

Answer[1]

© UCLES 2011

4024/22/M/J/11

Do not write in this margin

(d)	David's weekly income was twice as much as Ed's weekly income.	Do not
	Calculate David's weekly income.	write in this margin
	Answer £[2]	
(e)	Andrew paid 20% of his weekly income of £270 as tax.	
	He also paid 6% of his weekly income of £270 towards his pension.	
	How much of his weekly income did he have left after paying tax and pension?	
	Answer £[2]	
(f)	Carol paid 20% of her weekly income of £405 as tax.	
	She also paid $x\%$ of her weekly income towards her pension. She then had £287.55 of her weekly income left.	
	Find <i>x</i> .	
	Answer[3]	
(g)	And rew's weekly income of $\pounds 270$ in 2009 was 8% more than his weekly income in 2008.	
	Find his weekly income in 2008.	
	Answer f [2]	
	[2]	

4024/22/M/J/11

7 (a)

4024/22/M/J/11

pers.net

www.XtremePa

(b)

4024/22/M/J/11

[Turn over

Section B [48 marks]

14

Answer **four** questions in this section.

Each question in this section carries 12 marks.

8 (a)
$$\mathbf{A} = \begin{pmatrix} 4 & 3 \\ -1 & 1 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 5 & 4 \\ -3 & -2 \end{pmatrix}$.
Find

Find

(i) $2\mathbf{A} - \mathbf{B}$,

(ii) B^{-1} .

4024/22/M/J/11

www.XtremePapers.net

© UCLES 2011

marg

Answer

[2]

[2]

15

4024/22/M/J/11

www.XtremePapers.ne

9 The table below shows some of the values of x and the corresponding values of y for

$$y = (2x - 3)(x + 2).$$

x	-3	-2	-1	0	1	2	3
у	9	0			-3	4	15

(a) Complete the table.

(b) On the axes below, plot the points from the table and join them with a smooth curve.

[2]

Do not write in this margin

[1]

4024/22/M/J/11

© UCLES 2011

		17		
(c)	Use	e your graph to		Do not
	(i)	solve the equation $(2x-3)(x+2) = 2$,		margin
			Answer[1]	
	(ii)	find the minimum value of <i>y</i> ,		
			Answer[1]	
	(iii)	find the gradient of the curve at $(2, 4)$.		
			Answer[2]	
(d)	(i)	Show that the <i>x</i> -coordinates of the points where would intersect are the solutions of the equation	y = (2x - 3)(x + 2) and $y = 1 - 2x$	
		$2x^2 + 3x - 7 = 0.$		

[1]

(ii) Solve algebraically the equation $2x^2 + 3x - 7 = 0$, giving each answer correct to 2 decimal places.

4024/22/M/J/11

4024/22/M/J/11

10

© UCLES 2011

4024/22/M/J/11

www.XtremePapers.net

```
11 [Volume of a cone = \frac{1}{3}\pi r^2 h]
```


The solid above consists of a cone with base radius *r* centimetres on top of a cylinder of radius *r* centimetres.

The height of the cylinder is twice the height of the cone. The total height of the solid is H centimetres.

(a) Find an expression, in terms of π , *r* and *H*, for the volume of the solid. Give your answer in its simplest form.

- (b) It is given that r = 10 and the height of the **cone** is 15 cm.
 - (i) Show that the slant height of the cone is 18.0 cm, correct to one decimal place.

4024/22/M/J/11

Do not write in this margin

© UCLES 2011

4024/22/M/J/11

[Turn over

Time (<i>m</i> minutes)	$60 < m \le 70$	$70 < m \le 80$	$80 < m \le 90$	$90 < m \le 100$	$100 < m \le 110$	$110 < m \le 120$
Frequency	24	92	104	68	24	8

(a) Complete the cumulative frequency table below.

Time (<i>m</i> minutes)	$m \le 60$	<i>m</i> ≤ 70	<i>m</i> ≤ 80	<i>m</i> ≤ 90	<i>m</i> ≤ 100	<i>m</i> ≤ 110	<i>m</i> ≤ 120
Cumulative frequency	0	24	116				

- (b) For this part of the question use the graph paper opposite.
 - (i) Using a scale of 2 cm to represent 10 minutes, draw a horizontal *m*-axis for $60 \le m \le 120$. Using a scale of 1 cm to represent 20 students, draw a vertical axis for cumulative frequencies from 0 to 320. On your axes, draw a smooth cumulative frequency curve to illustrate the information. [3]
 - Use your graph to estimate (ii)

Answer minutes [1]

Answer minutes [2]

write in this margin

[1]

Do not

Please turn over for the rest of this question.

© UCLES 2011

www.XtremePapers.net

(iii) A group of 300 students of similar ability took an equivalent test the previous year. Do not The following graph shows a distribution of their times. write in this margin 300 250 200 Cumulative 150 frequency 100 50 0 70 80 <u>9</u>0 100 110 120 60 Time (minutes) (a) Find the 20th percentile. Answer minutes [1] (b) Find the percentage of students who took at least 95 minutes to complete the test. Answer[1] (c) Hence make a comparison between the two tests. Answer[1]

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2011

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

	CANDIDATE NAME			
	CENTRE NUMBER		CANDIDATE NUMBER	
*				
4	MATHEMATICS (SYL	LABUS D)		4024/21
σ 	Paper 2			May/June 2011
				2 hours 30 minutes
ω σ	Candidates answer or	the Question Paper.		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.Write in dark blue or black pen.You may use a pencil for any diagrams or graphs.Do not use staples, paper clips, highlighters, glue or correction fluid.DO **NOT** WRITE IN ANY BARCODES.

Section A

Answer all questions.

Section B

Answer any four questions.

If working is needed for any question it must be shown in the space below that question.

Omission of essential working will result in loss of marks.

You are expected to use an electronic calculator to evaluate explicit numerical expressions.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 100.

This document consists of 24 printed pages.

www.XtremePapers.net

UNIVERSITY of CAMBRIDGE International Examinations

Ahmed's internet provider offers two payment sch	emes.
Scheme A : \$30 per month for unlimited use. Scheme B : \$0.05 per minute on weekdays ar	nd \$0.03 per minute at the weekend.
Each month Ahmed uses the internet for a total of of 12 hours at the weekend rate.	$5\frac{1}{4}$ hours at the weekday rate and a total
Find the cost per month, in dollars, for Scheme B cheaper.	and decide which payment scheme is
Answer	Scheme B costs \$
	Schemeis cheaper [2]
Ahmed's printer can use large or small black cartr A large cartridge costs \$48.50 and prints 1000 pag A small cartridge prints 650 pages. 2 small cartridges cost \$65.	idges. es.
(i) Find the cost per page, in dollars, if Ahmed b	uys 2 small cartridges.
	Answer \$ [1]
(ii) Is it cheaper per page for Ahmed to buy 2 sm Show your working.	all cartridges or a large cartridge?

Do not write in this margin

Section A [52 marks]

Answer **all** questions in this section.

© UCLES 2011

1

(a)

(b)

4024/21/M/J/11

www.XtremePapers.net

[1]

3

Ahmed buys a new monitor, keyboard and computer. He is given a 15% discount off the total price. The discounted price that Ahmed pays is \$1134.75. The price of the monitor before the discount was \$375. The price of the keyboard before the discount was \$70.

Calculate the price of the computer before the discount.

Answer \$.....[3]

Do not write in this margin

4024/21/M/J/11

2	(a)	A is the point (3, 6) and B is the point (11, 12).	o not e in this argin
	(b)	<i>Answer</i> (
	()	(i) Find the equation of the line <i>CD</i> in the form $y = mx + c$.	
		Answer y =[2] (ii) Does the point (-2, -9) lie on the line <i>CD</i> ? Show your working to justify your answer.	

4024/21/M/J/11

5

pers.net

www.Xtreme

3 (a)

PQRS is a triangular-based pyramid. *RS* is perpendicular to the base *PQR*. *RS* = 8 cm and $R\hat{QS} = 37^{\circ}$.

(i) Find QR.

Answer cm [2]

(ii)

Pyramid *KLMN* is similar to pyramid *PQRS*. MN = 2 cm and the volume of *KLMN* is 3 cm^3 .

Find the volume of PQRS.

4024/21/M/J/11

4024/21/M/J/11

Do not write in this

margin

Exchange Rate $\$1 = \pounds0.45$

Jean-Pierre bought a watch for \$110. Simon bought an identical watch for £46.62.

(b)

Find the difference, in dollars, between the amount Jean-Pierre paid and the amount Simon paid.

Answer \$.....[2]

(c) The time taken to build a brick wall is inversely proportional to the number of workers. 3 workers took 30 hours to build a wall.

Calculate the time it would have taken 5 workers to build this wall.

Answer hours [2]

Do not write in this margin

Rectangular paving slabs measure *x* centimetres by *y* centimetres, where x < y. Fourteen of these slabs form a path around each of two different rectangular gardens. These two gardens are shaded in the designs below.

Design 2

(a) The **outside** perimeter of the path in **Design 1** is 10.2 metres. The **total** perimeter of the path in **Design 2** is 13.6 metres.

Show that 4x + 5y = 510 and 5x + 2y = 340.

4

4024/21/M/J/11

(b) Solve the simultaneous equations.

Do not write in this margin

	4x + 5y = 510 5x + 2y = 340	
	3x + 2y = 340	
	Answer $x = \dots$	
	<i>y</i> =	[3]
(c)	Find the difference between the areas of the two gardens.	
	Give your answer in square metres.	
		2
	Answer	m^2 [2]

4024/21/M/J/11

www.XtremePapers.net

5 (a)
$$\mathbf{A} = \begin{pmatrix} -1 & 2 \\ 3 & -1 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 4 & 2 \\ -3 & -1 \end{pmatrix}$.
(i) Find AB.
(ii) Find \mathbf{B}^{-1} .
(iii) Find \mathbf{B}^{-1} .
(iv) $\overrightarrow{PQ} = \begin{pmatrix} 12 \\ 5 \end{pmatrix}$ and $\overrightarrow{QR} = \begin{pmatrix} -4 \\ 1 \end{pmatrix}$.
(i) Calculate $|\overrightarrow{PQ}|$.
(i) Calculate $|\overrightarrow{PQ}|$.
(ii) Find \overrightarrow{PR} .
(i) Find \overrightarrow{PR} .
(i) Find \overrightarrow{PR} .

10

Answer

4024/21/M/J/11

www.XtremePapers.net

[1]

4024/21/M/J/11

www.XtremePapers.net

12

4024/21/M/J/11

	(ii)	One ver	tex of tri	angle A	A is (2,	1).						Do not
	Find the coordinates of this point when it is											margin
	(a) reflected in the line $y = -x$,											
		(b) rota	ated thro	ugh 90	° antic	lockwi	se about	Answa 2 (1, -1).	er	()	[1]	
								Answ	er	()	[1]	
(b)	You	may use	the grid	below	to help	o you a	nswer th	nis questio	on.			
	The points $(2, 1)$, $(4, 3)$, $(3, 1)$ and (p, q) form a quadrilateral. This quadrilateral has rotational symmetry order 1 and one line of symmetry.											
	(i) One possible position of (p, q) is $(2, 2)$.											
	Write down the name of this special quadrilateral.											
	Answer									[1]		
	(ii)	Given th	nat <i>p</i> and	q are i	ntegers	s, find	two othe	er possible	e posit	ions of (p, q) .		
					Answer		(
							()	[0]				
										()	[2]	
			y ▲ 5 –									
			4 -									
			3									
			2									
			1									
			0 + 0 + 0		i 1	i 2	3		5 x			

4024/21/M/J/11

www.XtremePapers.net

Section B [48 marks]

Answer **four** questions in this section.

Each question in this section carries 12 marks.

ABCD is a trapezium with AD parallel to BC. AB = 16 cm, BC = 20 cm and $A\hat{B}C = 115^{\circ}$.

(a) Find AC.

(b) Show that the perpendicular distance between BC and AD is 14.5 cm.

4024/21/M/J/11

7

(c)	The	area of the trapezium $ABCD$ is 348 cm^2 .	Do not write in this
	(i)	Find AD.	margin
	(;;)	Answer	
	(11)	Show that the area of thangle ACD is 205 cm ² .	
		[1]	
((iii)	Hence, or otherwise, find $C\hat{A}D$.	
		Answer	

4024/21/M/J/11

A is a point on the circle, centre M, and AB is a tangent at A. AM = y centimetres, AB = (y + 5) centimetres and MB = (y + 9) centimetres.

(i) Show that $y^2 - 8y - 56 = 0$.

[2]

Do not write in this

margin

(ii) Solve the equation $y^2 - 8y - 56 = 0$, giving each answer correct to 1 decimal place.

(iii) Find the length of the longest side of triangle *ABM*.

4024/21/M/J/11

(b)

Q, *R* and *S* are points on a circle, centre *O*. *QT* is the tangent at *Q* and $\hat{QTO} = x^{\circ}$.

(i) (a) Show that $Q\hat{R}S$ is $\frac{1}{2}(90-x)$.

[1]

Do not

write in this margin

(b) Find an expression, in terms of x, for $O\hat{Q}S$.

(ii) It is given that three times $Q\hat{R}S$ is twice $O\hat{Q}S$.

(a) Show that 180 + 2x = 270 - 3x.

(**b**) Hence find $Q\hat{T}O$.

[2]

4024/21/M/J/11

The masses of some oranges were recorded. The table below shows the distribution of their masses.

Mass (n grams)	$100 \le n < 150$	$150 \le n < 200$	$200 \le n < 250$
Frequency	14	р	26

)

Do not

write in this margin

(b) The estimated mean mass of an orange is 183 grams.

Find the value of *p*.

(c) (i) An orange is chosen at random.

Find the probability that it has a mass less than 250 grams.

(ii) A potato and an orange are chosen at random.

Calculate the probability that they both have a mass less than 150 grams.

4024/21/M/J/11

10 A cylindrical candle has a height of 5 cm.A is the centre of the top of the candle and B is the centre of the base of the candle.The wick runs from B through A and extends 12 mm above A.

(a) How many of these candles can be made using a 2m length of wick?

- (b) The wick is in the form of a solid cylinder. The volume of the wick **inside** the candle from A to B is 0.2 cm^3 .
 - (i) Calculate the radius of the wick. Give your answer in millimetres.

4024/21/M/J/11

4024/21/M/J/11

www.XtremePapers.net

[Turn over

www.XtremePapers.net

22

- (b) On Tuesday Brian leaves home at 8.00 am and travels 30 km to work. On the first part of his journey he travels for 15 minutes at a speed of 40 km/h. On the second part of his journey he travels 12 km in 8 minutes at a constant speed. On the third part of his journey he travels at a constant speed. He arrives at work at 8.47 am.
 - (i) Find the distance he travels on the first part of his journey.
 - Answer km [1]

Do not

write in this margin

(ii) On the axes below, draw a distance-time graph to represent his journey to work on Tuesday.

Answer km/h [2]

Please turn over for the rest of this question.

4024/21/M/J/11

www.XtremePapers.net

[Turn over

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2011

4024/21/M/J/11

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

	CANDIDATE NAME		
	CENTRE NUMBER	CANDIDATE NUMBER	
*	MATHEMATICS		4024/12
4 6 8 4	Paper 1		May/June 2011 2 hours
V 0	Candidates ans	wer on the Question Paper.	
0 0	Additional Mate	rials: Geometrical instruments	
4			

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.Write in dark blue or black pen.You may use a pencil for any diagrams or graphs.Do not use staples, paper clips, highlighters, glue or correction fluid.DO **NOT** WRITE IN ANY BARCODES.

Answer **all** questions.

If working is needed for any question it must be shown in the space below that question. Omission of essential working will result in loss of marks.

ELECTRONIC CALCULATORS MUST NOT BE USED IN THIS PAPER.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 80.

This document consists of **20** printed pages.

UNIVERSITY of CAMBRIDGE International Examinations

[Turn over

ELECTRONIC CALCULATORS MUST NOT BE USED IN THIS PAPER.

1 (a) Evaluate $12 + 6 \div 2 - 8$.

(**b**) Evaluate 2.6×0.2 .

2 (a) It is given that $\frac{1}{5} < n < \frac{1}{4}$.

Write down a decimal value of n that satisfies this inequality.

(**b**) Express $\frac{48}{60}$ as a percentage.

Answer % [1]

4024/12/M/J/11

Answer[1]

(b) Evaluate $1\frac{3}{4} \times \frac{2}{9}$, giving your answer as a fraction in its lowest terms.

3

Answer[1]

4 (a) Solve 5y - 3 > 3y + 12.

Answer y[1]

(b) Write down all the integers that satisfy the inequality $-6 \le 3x < 6$.

Answer[1]

[Turn over

4024/12/M/J/11

$$\mathbf{5} \qquad \mathbf{c} = \begin{pmatrix} 3\\2 \end{pmatrix} \qquad \mathbf{d} = \begin{pmatrix} 8\\-6 \end{pmatrix}$$

(a) Calculate $2\mathbf{c} - \mathbf{d}$.

(b) Calculate $|\mathbf{d}|$.

Answer[1]

Answer

[1]

ABC is a right-angled triangle with AB = 6 cm and BC = 9 cm. A semicircle of diameter 6 cm is joined to the triangle along *AB*.

Find an expression, in the form $a + b\pi$, for the **total** area of the shape.

© UCLES 2011

4024/12/M/J/11

7	(a)	The ratio of boys to girls in a class is 4:5. What fraction of the class are boys?		
	(b)	The ratio of boys to girls in a school is 3:4. There are 120 more girls than boys. How many students are in the school?	Answer	[1]
			Answer	[1]

8 *y* is directly proportional to the square of *x*.

Given that y = 2 when x = 4, find y when x = 10.

Answer y =[2]

4024/12/M/J/11

www.XtremePapers.net

[Turn over

6

The shaded region on the diagram is represented by three inequalities.

One of these is $y \ge 3x - 2$.

Write down the other two inequalities.

4024/12/M/J/11

7

Answer cm [2]

ABCD is a trapezium with AB = 21 cm and CD = 35 cm. $A\hat{B}C = B\hat{C}D = 90^{\circ}$ and $A\hat{D}C = \theta$.

Using as much information from the table as is necessary, calculate AD.

Answer cm [2]

4024/12/M/J/11

12 (a) On the Venn diagram, shade the set $A \cap B \cap C'$.

[1]

- (b) $\mathscr{E} = \{2, 3, 4, 5, 6, 7, 8, 9, 10\}$ $P = \{x : x \text{ is a prime number}\}$ $Q = \{x : x \ge 5\}$
 - (i) Find the value of $n(P \cap Q)$.

(ii) List the elements of $P \cup Q'$.

Answer[1]

4024/12/M/J/11

13 (a) The mass of one grain of rice is 0.000 02 kg.

Write 0.000 02 in standard form.

(b) The table shows the amount of rice grown in some countries in 2002.

		China	Brazil	India	Vietnam
A	mount (tonnes)	1.2×10^{8}	$7.6 imes 10^6$	$8.0 imes 10^7$	2.1×10^7

(i) Write these amounts in order, smallest first.

Answer	,	,	,	[1]
	smallest			

(ii) Calculate the difference in the amount of rice grown in Brazil and Vietnam. Give your answer in standard form.

Answer tonnes [1]

4024/12/M/J/11

[Turn over

14 (a) Express 108 as a product of its prime factors.

Answer[1]

(b) Written as products of their prime factors, $N = 2^p \times 5^q \times 7^r$ and $500 = 2^2 \times 5^3$.

The highest common factor of *N* and 500 is $2^2 \times 5^2$. The lowest common multiple of *N* and 500 is $2^3 \times 5^3 \times 7$.

Find p, q and r.

15 (a) Factorise completely $9pq - 12q^2$.

Answer[1]

(b) Factorise completely 8px + 4py - 6x - 3y.

4024/12/M/J/11

16 The scale drawing shows three towns, A, B and C. The scale of the drawing is 1 cm to 25 km.

4024/12/M/J/11

www.XtremePapers.net

[Turn over

17 The table shows the height, in metres, above sea level of the highest and lowest points in some continents.A negative value indicates a point below sea level.

	Asia	Africa	Europe	South America
Highest point (m)	8850	5963	5633	6959
Lowest point (m)	-409	-156	-28	-40

(a) What is the height above sea level of the highest point in Africa? Give your answer in **kilometres**.

Answer km [1]

(b) In South America, how much higher is the highest point than the lowest point? Give your answer in metres.

Answer m [1]

(c) How much higher is the lowest point in Europe than the lowest point in Asia? Give your answer in metres.

Answer m [1]

© UCLES 2011

4024/12/M/J/11

18 The diagram below shows the quadrilateral *PQRS*.

(a) On the diagram, construct

- (i) the bisector of $S\hat{P}Q$, [1]
- (ii) the perpendicular bisector of QR. [1]
- (b) On the diagram, shade the region inside the quadrilateral containing the points that are closer to PQ than to PS and nearer to Q than to R. [1]

4024/12/M/J/11

[Turn over

19 (a) Express 0.047 852 correct to two decimal places.

(b) Estimate the value of $\sqrt{200}$, giving your answer correct to two significant figures.

Answer[1]

(c) By writing each number correct to one significant figure, estimate the value of

 $\frac{212\times 1.97^2}{0.763}\,\cdot\,$

Answer[2]

4024/12/M/J/11

20 The table shows the distribution of the number of complete lengths swum by a group of swimmers.

Number of complete lengths (<i>n</i>)	$0 < n \le 20$	$20 < n \le 40$	$40 < n \le 60$	$60 < n \le 80$
Frequency	5	20	10	5

(a) Find the modal class.

(**b**) Calculate an estimate of the mean.

4024/12/M/J/11

Points *A*, *B*, *C* and *D* lie on the circumference of a circle, centre *O*, and AB = CD. AC and BD intersect at *E*. $O\hat{B}C = 20^{\circ}$.

(a) Calculate $B\hat{O}C$.

22

(**b**) Calculate $C\hat{A}B$.

Answer $C\hat{A}B = \dots [1]$

(c) Show that triangles *AEB* and *DEC* are congruent.

4024/12/M/J/11

- 23 (a) Imran is paid \$16 per hour.
 - (i) One week he works 35 hours.

Calculate the amount he is paid for the week.

Answer \$.....[1]

(ii) Imran is paid 20% extra per hour for working at weekends.

Work out the total amount Imran is paid for working 4 hours at the weekend.

Answer \$.....[2]

(b) The exchange rate between pounds and dollars is $\pounds 1 = \$1.80$. Anna converts \$270 into pounds.

Calculate the number of pounds Anna receives.

Answer £.....[2]

4024/12/M/J/11

[Turn over

24	P is	the point $(-2, 1)$ and Q is the point $(3, 7)$.
	(a)	<i>M</i> is the midpoint of <i>PQ</i> .
		Find the coordinates of <i>M</i> .
	(b)	Answer (
		Answer[1]
	(c)	The line with equation $2y + 3x + k = 0$ passes through the point <i>P</i> .
		(i) Find <i>k</i> .
		(ii) Find the gradient of this line. $[2]$

18

Answer[1]

4024/12/M/J/11

25 (a) Solve 10 - 3(2x - 1) = 3x + 1.

(b) Solve the simultaneous equations.

$$4x + 3y = 11$$
$$2x - 5y = 25$$

Question 26 is printed on the following page.

4024/12/M/J/11

www.XtremePapers.net

[Turn over

26 The diagram shows a rectangle with length (2x+3) cm and width (x-1) cm.

(a) The area of the rectangle is 12 cm^2 .

Form an equation in x and show that it reduces to $2x^2 + x - 15 = 0$.

(b) Solve $2x^2 + x - 15 = 0$.

[2]

(c) Find the perimeter of the rectangle.

Answer cm [1]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2011

4024/12/M/J/11

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

	CANDIDATE NAME		
	CENTRE NUMBER	CANDIDATE NUMBER	
*			
0	MATHEMATICS	S (SYLLABUS D)	4024/11
л	Paper 1		May/June 2011
7			2 hours
0 0	Candidates ans	wer on the Question Paper.	
6 1	Additional Mate	rials: Geometrical instruments	
4			

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.Write in dark blue or black pen.You may use a pencil for any diagrams or graphs.Do not use staples, paper clips, highlighters, glue or correction fluid.DO **NOT** WRITE IN ANY BARCODES.

Answer **all** questions.

If working is needed for any question it must be shown in the space below that question. Omission of essential working will result in loss of marks.

ELECTRONIC CALCULATORS MUST NOT BE USED IN THIS PAPER.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 80.

This document consists of **20** printed pages.

UNIVERSITY of CAMBRIDGE International Examinations

[Turn over

ELECTRONIC CALCULATORS MUST NOT BE USED IN THIS PAPER.

1	Evaluate

(a) $52.3 \times 10 - 3.76 \times 100$,

Answer[1]

(b) $20-8 \div 2 + 1$.

2 (a) Express 18% as a fraction in its lowest terms.

(b) Write down an irrational number between 3 and 4.

Answer[1]

4024/11/M/J/11

3 Evaluate

(a)
$$\frac{2}{3} + \frac{3}{10}$$
,

(b) $1\frac{3}{5} \div 3$.

4 Write down

(a) a square number that is a factor of 75,

Answer[1]

(b) a cube number that is a multiple of 24.

© UCLES 2011

4024/11/M/J/11

www.XtremePapers.net

[Turn over

- 5 An instrument is used to measure the height of an object above sea level. The height, in metres, is shown on the dial.
 - (a) What is the reading on the dial?

Answer m [1]

(b) The object moves from position A, where the dial reads -54, to position B, where the dial reads + 48.

What is the difference in height between A and B?

Answer m [1]

- 6 Evaluate
 - (a) $8^{\frac{2}{3}}$,

Answer[1]

(b) $\left(\frac{1}{6}\right)^{-2}$.

4024/11/M/J/11

7 (a) Using set notation, describe the shaded region in the Venn diagram.

(b) In the Venn diagram, shade the region represented by $P' \cap (Q \cup R)$.

4024/11/M/J/11

www.XtremePapers.net

[Turn over

[1]

(a)	A bag contains red and blue pens in the ratio 2 : 7. There are 18 red pens in the bag.		
	How many blue pens are in the bag?		
(b)	A box contains apples and oranges. The ratio of apples to oranges is 2 : 3. What percentage of the fruit are oranges?	Answer	[1]
		Answer	% [1]
Fac	torise completely		
(a)	$12ab^2 - 8a^2b ,$		
		Answer	[1]
(b)	$2x^2 + 3x - 20.$		
		Answer	
	(a) (b) Fac (a) (b)	 (a) A bag contains red and blue pens in the ratio 2 : 7. There are 18 red pens in the bag. How many blue pens are in the bag? (b) A box contains apples and oranges. The ratio of apples to oranges is 2 : 3. What percentage of the fruit are oranges? Factorise completely (a) 12ab² - 8a²b (b) 2x² + 3x - 20. 	 (a) A bag contains red and blue pens in the ratio 2 : 7. There are 18 red pens in the bag. How many blue pens are in the bag? <i>Answer</i> (b) A box contains apples and oranges. The ratio of apples to oranges is 2 : 3. What percentage of the fruit are oranges? <i>Answer</i> Factorise completely (a) 12ab² - 8a²b, <i>Answer</i> (b) 2x² + 3x - 20. <i>Answer</i>

© UCLES 2011

4024/11/M/J/11

10 (a) Sara sets out on a journey at 1050. She travels 65 km at an average speed of 20 km/h.

At what time does she complete her journey?

(b) Kevin takes T minutes to travel to work. Jane travels the same distance to work but goes 10% faster than Kevin.

Find an expression, in terms of T, for the number of minutes that Jane takes to travel to work.

4024/11/M/J/11

[Turn over

- у 5 A 4 R 3 2 1 0 5 2 0 4 1 3 (a) What is the gradient of *AB*? Answer[1] (b) The shaded region **R** is defined by five inequalities. Two of these are $x \le 5$ and $y \le 5$.
- In the diagram below, the equation of the line AB is 2y = 9 3x. 11

Write down the other three inequalities.

Answer	
	[2]

x

4024/11/M/J/11

12 (a) Show that the interior angle of a regular decagon is 144° .

(b) *AB* and *BC* are two sides of a regular decagon. *AB* and *BD* are two sides of a regular hexagon.

Work out the value of *x*.

4024/11/M/J/11

www.XtremePapers.net

[Turn over

[1]

13 Jamil recorded the number of text messages sent by the students in his class on one day. The results are shown in the bar chart.

Use the bar chart to find

(a) the number of students in Jamil's class,

Answer[1]

(b) the median number of text messages sent,

Answer[1]

(c) the modal number of text messages sent.

Answer[1]

4024/11/M/J/11
14 (a) By writing each number correct to one significant figure, estimate the value of

 $\frac{7.84\times326}{0.18}\cdot$

(b) An athlete ran a race in 9.58 seconds, correct to the nearest hundredth of a second.

What is the shortest possible time that the athlete could have run the race?

Answer	<i>a</i> =
	<i>b</i> =[3]

4024/11/M/J/11

www.XtremePapers.net

[Turn over

16 Solve

(a) $3x \ge 2 - 5x$,

(b)
$$\frac{5x}{x+1} - \frac{2}{x-1} = 8$$
.

© UCLES 2011

4024/11/M/J/11

In the diagram, *ACD* and *ECD* are triangles with CD = DE. *AD* and *EC* intersect at *F*. *B* is the point on *AC* such that *BF* is parallel to *CD*. $B\hat{A}F = 26^\circ$, $B\hat{F}C = 38^\circ$ and $C\hat{F}D = 110^\circ$.

Find

(a) $F\hat{C}D$,

Answer $F\hat{C}D = \dots [1]$

(**b**) $E\hat{D}C$,

Answer $E\hat{D}C = \dots [1]$

(c) $A\hat{B}F$,

(d) $B\hat{C}F$.

Answer $A\hat{B}F = \dots$ [1]

Answer $B\hat{C}F = \dots$ [1]

© UCLES 2011

4024/11/M/J/11

[Turn over

- 18 The first four terms, u_1, u_2, u_3 and u_4 , in a sequence of numbers are given by

 - (a) Evaluate u_5 .

(b) Write down an expression, in terms of *n*, for the *n*th term, u_n , of the sequence.

(c) Given that $u_n = An^2 + Bn + C$, find the values of A, B and C.

Answer	<i>A</i> =
	<i>B</i> =
	<i>C</i> =[2]

4024/11/M/J/11

4024/11/M/J/11

[Turn over

- 15
- (a) Vicky's fingernail grows one nanometre in one second. One nanometre is 1×10^{-9} metres. 19 Vicky calculates how much her fingernail grows in one hour.

Find this length, in standard form, giving your answer

(i) in metres,

(ii) in millimetres.

Answer m [1]

Answer $d = \dots [2]$

(b) It is given that $2 \times 10^3 (d + 3 \times 10^2) = 8 \times 10^6$.

Find *d*.

- 20 It is given that h(x) = 2x 5 and $g(x) = \frac{3}{x 2}$. Find
 - (a) h(4),

Answer[1]

(b) $g^{-1}(x)$,

(c) the value of t such that h(t) = g(3).

4024/11/M/J/11

21 Kelvin chooses a pair of trousers and a shirt to wear for college. He chooses grey trousers or black trousers. He chooses a red shirt or a yellow shirt.

The probability that he chooses grey trousers is $\frac{1}{3}$. The probability that he chooses a red shirt is $\frac{4}{5}$. His choice of shirt is independent of his choice of trousers.

(a) Complete the tree diagram.

(b) What is the probability that Kelvin chooses grey trousers and a red shirt?

(c) What is the probability that Kelvin does **not** choose either black trousers or a red shirt?

© UCLES 2011

4024/11/M/J/11

[Turn over

22 The diagram shows a window made up of a large semicircle and a rectangle. The large semicircle has 4 identical sections, A, B, C, D, and a small semicircle, E. The rectangle has three identical square sections, F, G and H. The side of each square is 20 cm.

Find an expression, in the form $a + b\pi$, for

(a) the area of the whole window,

(b) the perimeter of section B.

4024/11/M/J/11

23 (a) Construct, using ruler and compasses only, triangle ABC with sides AB = 9 cm, BC = 8 cm and AC = 6 cm. The line AB has been drawn for you.

19

Ā	В	
		[2]

(b)	Con	struct the locus of points, inside the triangle ABC, which are	
	(i)	equidistant from AB and BC,	[1]
	(ii)	4 cm from A.	[1]
(c)	Sha near	de the region, inside triangle ABC , containing the points that are rer to BC than AB and more than 4 cm from A .	[1]

Question 24 is printed on the following page.

4024/11/M/J/11

www.XtremePapers.net

[Turn over

- 20
- 24 The variables x and y are connected by the equation $y = x^3 6x$.
 - (a) Complete the table of values.

x	-2	-1	0	1	2	3
у		5	0		-4	9

(b) On the axes below, draw the graph of $y = x^3 - 6x$ for $-2 \le x \le 3$.

[2]

[2]

- (c) Use your graph to find
 - (i) two solutions of the equation $x^3 6x = 0$,

(ii) the least value of y when x is positive.

© UCLES 2011

4024/11/M/J/11

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

4024 MATHEMATICS (SYLLABUS D)

4024/22

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2011	4024	22

Abbreviations

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
WWW	without wrong working

SECTION A	
-----------	--

Qu.	Answers	Mark	Comments
1	(a) (i) $\frac{1}{10x}$ cao	1	
	(ii) $\frac{11x-12}{x(x-3)}$ final answer	2	M1 for $\frac{4(x-3)+7x}{x(x-3)}$
	(b) (i) ¹ / ₄ or 0.25	1	
	(ii) $c = 2 \operatorname{cao} d = 1.5 \operatorname{oe}$	2	If 0, B1 for $(f^{-1}(x) =) \frac{4x+3}{2}$
	(iii) $g = \frac{1}{2}$ or 0.5	2	M1 for $\frac{2g-3}{4} = -g$
2	(a) (i) $c = \frac{2A}{h} - d \text{ or } \frac{2A - hd}{h}$	2	M1 for $c + d = \frac{2A}{h}$ or $\frac{1}{2}hc = A - \frac{1}{2}hd$ oe
	(ii) 3	1	or SC1 for $c = \frac{A}{\frac{1}{2}h} - d$
	(h) (i) 102	2	M1 for 31.5 and 19.5 used
	(ii) 322	3	M2 for (32.5 × 20.5)–(25.5 × 13.5) or M1 for (32.5 × 20.5) or (25.5 × 13.5)
3	(a) $\frac{1}{3}$	1	
	(b) (i) $\frac{1}{20}$	2	M1 for $\frac{1}{6} \times \frac{3}{5} \times \frac{2}{4}$ seen
	(ii) $\frac{3}{20}$	2	SC1 for $\frac{5}{36}$
			M1 for $\left(\frac{3}{6} \times \frac{2}{5} \times \frac{1}{4}\right) + \left(\frac{3}{6} \times \frac{2}{5} \times \frac{2}{4}\right)$ seen

© University of Cambridge International Examinations 2011

Page 3		Mark Scheme: Teachers' version			Syllabus	Paper
GUE O LEVEL – May/		/June 2	011	4024	22	
4	(a) (i)	$(u_n) = 3n + 1$ oe	1			
	(ii)	61	1ft	ft their u _n with	h <i>n</i> = 20	
	(b) (i)	$(v_n) = 17 - 2n$ oe	1			
	(ii)	(k =) 49 cao	1			
5	(a) 11 3	30 cao	1			
	(b) 39 1	ninutes	1			
	(c) 8 ki	n	1			
	(d) 241	xm/h	1			
	(e) parl	and shopping centre	1			
	(f) Sali	m and 9 minutes	2	B1 for 12 27 or 1.2 hours of or for line fro	or 1 hour 12 minu or 72 minutes m (11,15,0) to (12	tes seen 2.15.15)
6	(a) (f)	350	1			
	(b) $(\pounds)^2$	225	1ft	ft their (a)	6	
	(c) 108	0	1ft	ft $\frac{405}{\text{their(a)}} \times 3$	360 or $\frac{405}{\text{their}(\mathbf{b})} \times \mathbf{b}$	60
	(d) (£)3	300	2	SC1 for 120°	or £450 seen.	
	(e) (£)]	99.80	2	B1 for (£)70.2 M1 for (1 – 0	20 or .26) × 270 oe	
	(f) 9(%))	3	M2 for figs $\frac{3}{2}$ SC1 for 81 or	$\frac{645}{405}$ or $\frac{11745}{405}$ or $\frac{11745}{405}$ or $\frac{11745}{324}$ seen	$\frac{28755}{405}$ seen
	(g) (£)2	250	2	M1 for 108 %	270 soi	
7	(a) (i)	2	1			
	(ii)	(a) $q-r$ (b) $2p-q-r$ (c) $1\frac{1}{2}p-r$ (d) $\frac{1}{2}p-q+\frac{1}{2}r$	1 1 1 1			
	(b) (i)	45°	1			
	(ii)	95°	1ft	ft 140 – their	(b)(i)	
	(iii)	80°	1ft	ft 125 – their	(b)(i)	

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2011	4024	22

SECTION B

8	(a) (i) $\begin{pmatrix} 3 & 2 \\ 1 & 4 \end{pmatrix}$	2	B1 for 3 correct terms
	(ii) $\begin{pmatrix} -1 & -2 \\ 1.5 & 2.5 \end{pmatrix}$ or $\frac{1}{2} \begin{pmatrix} -2 & -4 \\ 3 & 5 \end{pmatrix}$	2	B1 for $k \begin{pmatrix} -2 & -4 \\ 3 & 5 \end{pmatrix} k \frac{1}{2}$
	(b) (i) Reflection y = 1	1 1	or $\frac{1}{2} \times (2 \times 2 \text{ matrix})$
	(ii) Enlargement Scale factor ½ Centre (-5,0)	1 1	
	(iii) (-2, 3) (-4, 5) (-4, 7)	2	B1 for 2 correct vertices or for $\begin{pmatrix} -2 & -4 & -4 \\ 3 & 5 & 7 \end{pmatrix}$
	(iv) Rotation 90° anticlockwise about (0,0)	1 1	
9	(a) $-5, -6$	1	
	(b) All points plotted correctly <u>and</u> a smooth curve – generous quadratic	2ft	B1 for 5 or more points correct ft from their table
	(c) (i) $x = -2.2$ to -2.35 and 1.65 to 1.85	1	
	(ii) −6.4 <i>mv</i> < −6.0	1	
	(iii) 8 to 10	2	M1 for tangent
	(d) (i) $2x^2 + 4x - 3x - 6 = 1 - 2x$ leading to $2x^2 + 3x - 7 = 0$	1	
	(ii) $x = 1.27, -2.77$	4	B3 for one solution or $x = 1.26$ to 1.3 and -2.76 to -2.8 or
			if in form $\frac{p \pm (or + or -)\sqrt{q}}{r}$
			B1 for $p = -3$, $r = 4$ B1 for $q = 65$ or $\sqrt{q} = 8.06$

© University of Cambridge International Examinations 2011

Page 5		5	Mark Scheme: Teachers' version			Syllabus	Paper
			GCE O LEVEL – May/June 2011			4024	22
	r —				l		
10	(a)	(i)	$74.95 \rightarrow 75.05$	1			
		(ii)	$336.5 \rightarrow 337.5$	3	M1 for 250^2 +	$-300^2 \pm 2 \times 250 \times$	$300\cos75$
					M1 for $\sqrt{1525}$	$500 - 150000\cos75$	$5 (= \sqrt{113677})$
		(iii)	$44.2 \rightarrow 44.3$	3	M2 for $\sin \theta$	$=\frac{300\sin75}{\text{their}337}$	
					SC1 for (<i>CŜB</i>	$r =)$ 45.7 \rightarrow 45.8 s	seen
	(b)	(i)	$241 \rightarrow 241.5$	2	M1 for cos 15	$5 = \frac{DB}{250}$ oe	
		(ii)	12050 - 12100	2ft	B1 for $\frac{1}{2} \times 20$	$00 \times 241 \times \sin 30$	
		<i>(</i> ···)	225	1	ft 50 \times their (b)(i)	
		(111)	225	1			
11	(a)	$\frac{7\pi r^2}{9}$	^{2}H	3	B1 for $\frac{2\pi r^2 H}{3}$	$\frac{I}{-}$ and	
					B1 for $\frac{\pi r^2 H}{\Omega}$		
	(b)	(i)	$\sqrt{15^2 + 10^2} = 18(.0)$	2	M1 for 15^2 +	10 ²	
		(ii)	$62.8 \rightarrow 62.9 \text{ or } 20\pi$	2	M1 for $2 \times \pi$	× 10	
		(iii)	$\theta = \frac{62.8 \times 360}{36\pi} = 200^{\circ}$	2	M1 for $\frac{\theta}{360}$ ×	$\pi \times 18 \times 2 = \text{their}$	(ii)
		(iv) 2	$2760 \rightarrow 2770$	3	M1 for $\frac{200}{360} \times$	$\pi \times 18^2 (= 565.5)$	
					M1 for $30 \times t$	heir (ii) (= 1884)	
12	(a)	220,	288, 312, 320	1			
	(b)	(i)	7 correct plots and smooth ogive	3	B2 for 5 or 6	correct plots and s	mooth ogive
					B1 for 5 or 6	correct plots	
		(ii)	(a) $83 \rightarrow 85$	1ft	ft from their g	graph	
			(b) $13.5 \rightarrow 16.5$	2	M1 for readin	igs at 80 and 240 s	seen
			(c) 15 to 19%	2	SC1 for $48 \rightarrow$	$ ightarrow 60 ext{ or } 81 \rightarrow 85 ext{ set}$	en
		(iii)	(a) 76 cao	1			
			(b) 25% cao	1			
			(c) More pupils took longer (so)	1			
			previous test was probably harder				

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

4024 MATHEMATICS (SYLLABUS D)

4024/21

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2011	4024	21

Abbreviations

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
WWW	without wrong working

SECTION A	
------------------	--

Qu	Answers	Mark	Comments
1	(a) 37.35 and A	2	M1 for $315 \times 0.05 + 720 \times 0.03$
	(b) (i) \$0.05	1	
	(ii) Large <u>and</u> 0.0485 seen oe	1	
	(c) 890	3	M1 for $\frac{1134.75}{0.85}$
			M1 for their $1335 - (375 + 70)$
2	(a) (7,9)	1	
	(b) (i) $y = 2x - 5$	2	M1 for gradient $\frac{(15+21)}{(10+8)}$ (= 2)
	(ii) Yes <u>and</u> $-9 = 2 \times -2 - 5$	1ft	ft correct conclusion from their equation with the working shown
	(c) (i) (a) $(-5, 0)$	1	
	(b) $\left(\frac{4p-15}{3}, p\right)$	2	M1 for line through (4, 9) and (6, 6)
	(ii) (5,7 ¹ / ₂)	2	B1 for either x or y coordinate
3	(a) (i) 10.6 – 10.62	2	M1 for $\tan 37 = \frac{8}{QR}$
	(ii) 192	2	M1 for 4 ³ seen
	(b) 6.40	2	M1 for $\frac{46.62}{0.45}$
	(c) 18	2	M1 for $(k =)$ 90 oe or $\frac{3}{5} \times 30$

© University of Cambridge International Examinations 2011

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2011	4024	21

4	(a)	4x + 5y + 4x + 5y = 10 leading to $4x + 5y = 51$ 6x + 3y + 6x + 3y + 4x = 1360	$20 \\ 0 \\ + y + 4x + y$	1	
		leading to $5x + 2y = 34$	0	1	
	(b)	x = 40, y = 70		3	M1 for an attempt to make the coefficients of <i>x</i> or <i>y</i> equal M1 for subtracting the two equations
	(c)	0.56		2ft	M1 for figs 0.8×2.1 and figs 1.6×0.7 After 0, SC1 for answer figs 56 ft (2 × their <i>x</i> × their <i>y</i>) / 10 000
5	(a)	(i) $\begin{pmatrix} -10 & -4 \\ 15 & 7 \end{pmatrix}$		2	B1 for 3 correct terms
		(ii) $\begin{pmatrix} -0.5 & -1 \\ 1.5 & 2 \end{pmatrix}$		2	B1 for $\frac{1}{2} \times (2 \times 2 \text{ matrix})$ or for $\begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix}$ soi
	(b)	(i) 13		2	M1 for $12^2 + 5^2$ (= 169)
		(ii) $\begin{pmatrix} 8 \\ 6 \end{pmatrix}$		1	
	(c)	(i) $\begin{pmatrix} -5\\ 2 \end{pmatrix}$		1	
		(ii) (18,9)		1	
		(iii) 22		3ft	M1 for $12 \times (\text{their } 9 - 3)$ M1 for an attempt to subtract area of 3 triangles
6	(a)	(i) (a) Translation of	cao	1	
		$\begin{pmatrix} 1\\ -5 \end{pmatrix}$		1	
		(b) Enlargement Scale factor 3	cao 3, Centre (6, 4)	1 1	
		(ii) (a) (-1, -2) (b) (-1, 0)		1 1	
	(b)	(i) Kite		1	
		(ii) (1,3) (4,2)		1 1	Also $(4, -1)$ is correct for 1

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2011	4024	21

SECTION B

7	(a)	30.4	to 30.45	4	M1 for $16^2 + 20^2 \pm (2) \times 16 \times 20 \cos 115^\circ$ M1 for $\sqrt{656 - 640\cos 115}$ A1 for 926.(47)
	(b)	160	os25° oe	2	M1 for $\cos 25 = \frac{x}{16}$
	(c)	(i)	28 www	2	M1 for $\frac{1}{2}(20 + AD) \times 14.5 = 348$
		(ii)	¹ / ₂ × 28 × 14.5 (= 203) or 348 – ¹ / ₂ 20 × 16 sin115	1	$\frac{1}{2}$ 30.4 × 28 sin28.5
		(iii)	28.4 to 28.5	3ft	M1 for $\frac{1}{2} \times 30.4 \times 28 \times \sin CAD = 203$
					M1 for sin $CAD = \frac{203}{\frac{1}{2} \times 30.4 \times 28}$
					ft their AC and their AD
8	(a)	(i)	$y^{2} + 18y + 81 = y^{2} + y^{2} + 10y + 25$ $y^{2} - 8y - 56 = 0$	2	M1 for $(y+9)^2 = y^2 + (y+5)^2$ oe
		(ii)	12.5, -4.5	3	M1 for $y = \frac{8 \pm \sqrt{8^2 + 4 \times 56}}{2}$ soi
					A1 for one solution or 12.48(5) <u>and</u> -4.48(5)
		(iii)	21.5	1ft	ft 9 + their positive y
	(b)	(i)	(a) $Q\hat{O}S = 90 - x$ and conclusion	1	
			(b) $\frac{1}{2}(90+x)$ oe cao	2	M1 for $\frac{1}{2}(180 - (90 - x))$
		(ii)	(a) $3 \times \frac{1}{2} (90 - x)$ = $2 \times \frac{1}{2} (90 + x)$ leading to $180 + 2x$ = $270 - 3x$	2	M1 for $3 \times \frac{1}{2} (90 - x) = 2 \times \text{their } OQS$
			(b) 18	1	
9	(a)	(i)	Histogram with heights 0.14, 0.56 ,0.74, 0.42 and 0.2 widths 100, 50, 50, 50, 100	3	B2 for 4 correct columns or B1 for at least 1 correct column After 0, SC2 for "correct" histogram or SC1 for at least 3 "correct" columns (e.g. no
		(ii)	14 – 16	1	vertical or horizontal scale)
		(iii)	200 <i>m</i> < 250	1	
		(iv)	$\frac{7}{20}$ cao	1	
1			20		

© University of Cambridge International Examinations 2011

	Page 5		Mark Scheme: Te	Mark Scheme: Teachers' version		Syllabus	Paper
			GCE O LEVEL –	May/Jun	e 2011	4024	21
				1	[
	(b)	(<i>p</i> =) 35	3	M1 for $\frac{125 \times 14}{125 \times 14}$	$\frac{+175p + 225 \times 26}{40 + p}$ = 1750 + 5850 - 7	=183 7320
	(c)	(i)	1	1		1750 - 5650	1520
		(ii)	$\frac{49k}{750k}$	2ft	M1 for $\frac{7}{20} \times \frac{14}{75}$		
					ft their $\frac{7}{20}$ and the function of the f	heir 75	
10	(a)	32		2	M1 for $\frac{200}{6.2}$		
	(b)	(i)	1.13	3	B2 for figs 1128. M1 for fig $0.2 = \frac{1}{2}$	(or 113) <u>or</u> πr^2 fig 5	
		(ii)	(a) 56.5 to 56.51	3	M1 for $\pi \times 1.9^2 >$ M1 for their volu	< 5 me $- 0.2$	
			(b) 53	2ft	M1 for $\frac{3000}{56.5}$ ft their 56.5 with	rounding down to	an integer
	(c)	12.9		2	M1 for $2 \times \pi \times 1$.	.9 (= 11.9)	
11	(a)	(i)	35	1			
		(ii)	360	1			
		(iii)	7	1			
	(b)	(i)	10	1			
		(ii)	(8.00, 0) to (8.15, 10) (8.15, 10) to (8.23, 22) (8.23, 22) to (8.47, 30)	2ft	B1 for 2 correct 1 ft their 10 and the	ines eir 10 + 12	
		(iii)	20	2ft	M1 for $\frac{8}{24}$ (×60) ft $\frac{18 - \text{their } 10}{24/(60)}$		
	(c)	(i)	12.29 cao	2	M1 for sin 55 = $\frac{1}{2}$	<u>MK</u> oe	
		(ii)	247°	1			
		(iii)	10.2 to 10.7	1			

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

4024 MATHEMATICS (SYLLABUS D)

4024/12

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2011	4024	12

Abbreviations

- cao correct answer only
- cso correct solution only
- dep dependent
- ft follow through after error
- isw ignore subsequent working
- oe or equivalent
- SC Special Case
- www without wrong working

Qu	Answers	Mark	Part marks
1	(a) 7	1	
	(b) 0.52 oe	1	
2	(a) Any decimal <i>n</i> such that $0.2 < n < 0.25$	1	
	(b) 80	1	
3	(a) $\frac{7}{24}$ oe Final ans.	1	
	(b) $\frac{7}{18}$ cao	1	
4	(a) $(y) > 7.5$ oe	1	
	(b) −2, −1, 0, 1	1	
5	(a) $\begin{pmatrix} -2\\ 10 \end{pmatrix}$	1	
	(b) 10	1	
6	$\frac{9\pi}{2} + 27 \text{ oe}$	2	B1 for $\frac{\pi \times 3^2}{2}$ or $\frac{1}{2} \times 9 \times 6$ soi or
			for $\frac{\pi r^2}{2} + \frac{1}{2}bh$ with <i>r</i> , <i>b</i> and <i>h</i> clearly identified.
7	(a) $\frac{4}{9}$ oe	1	
	(b) 840	1	
8	12.5 oe	2	B1 for $y = kx^2$ or
			$(k =) \frac{1}{8}$ soi or 2 : 4 ² = y : 10 ² oe

© University of Cambridge International Examinations 2011

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2011	4024	12

9	$\begin{array}{ccc} y & 3 \\ y & -2x \end{array}$	2	C1 for either inequality correct or both statements $y()$ 3 and $y() - 2x$ given () may contain =, < etc
10	18	2	B1 for attempt at $\sqrt[3]{8}$: $\sqrt[3]{27}$ or M1 for 12^3 : $x^3 = 8 : 27$ oe
11	50	2	M1 for $\frac{35-21}{AD} = \cos\theta$ oe
12	(a) $A \xrightarrow{B} C$	1	
	(b) (i) 2	1	
	(ii) 2, 3, 4, 5, 7	1	
13	(a) 2 (. 0) × 10 ⁻⁵	1	
	(b) (i) $7.6 \times 10^6, 2.1 \times 10^7, 8.0 \times 10^7, 1.2 \times 10^8$	1	
	(ii) 1.34×10^7	1	
14	(a) $2^2 \times 3^3$	1	
	(b) $(p =) 3, (q =) 2, (r =) 1$	2	C1 for two correct
15	(a) $3q(3p-4q)$	1	
	(b) $(4p-3)(2x+y)$	2	M1 for $4p(2x + y) - 3(2x + y)$ or 2x(4p - 3) + y(4p - 3) oe or
			B1 for the correct extraction of a common factor at any stage
16	(a) (0)57°	1	
	(b) 237°	1 ft	ft their (a) + 180
	(c) 237.5	1	
17	(a) 5.963	1	
	(b) 6999	1	
	(c) 381 cao	1	

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2011	4024	12

18	(a) (i) Bisector of SPQ	1	
	(ii) Perpendicular bisector of <i>QR</i>	1	
	(b) Correct region shaded	1	
19	(a) 0.05 cao	1	
	(b) 14	1	
	(c) 1000	2	B1 for two of 200, 2 and 0.8 seen
20	(a) $20 < n$ 40	1	
	(b) 37.5	3	B1 for $\sum fn$
			and independent B1 for dividing by $(5+20+10+5)$
1	(-) 1(1	
21	(a) 10		
	(b) 16	1	
	(c) $\frac{2y^4}{x}$	2	C1 for two of 2, y^4 and x correct or
	~		B1 for $\frac{4y^8}{x^2}$ seen or $\frac{4^{\frac{1}{2}}xy^{\frac{9}{2}}}{x^2}$ or better
			x^2y^2
22	(a) 140	1	
	(b) 70	1ft	ft $\frac{1}{2}$ their (a)
	(c) Congruency established	3	B2 for $AB = CD$ stated, EAB = EDC soi or $DCE = ABE$ and DEC = BEA or B1 for any correct pair of equal angles.
23	(a) (i) 560	1	
	(ii) 76.8(0)	2	B1 for 19.2 or 3.2 oe soi
	(b) 150	2	B1 for figs $\frac{270}{1.8}$ seen

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2011	4024	12

24	(a) (0.5, 4) oe	1	
	(b) 1.2 oe	1	
	(c) (i) 4	2	B1 for substitution of (-2,1) in $2y + 3x + k = 0$ SC1 for answer - 23 or any correct ft ofter substitution of (+2, +1)
	(ii) -1.5 oe	1	any context it after substitution of $(\pm 2, \pm 1)$
25	(a) $\frac{1}{13}$ oe	2	M1 for $10 - 6x + 3 = 3x + 1$ or better
	(b) $(x =) 5$, $(y =) - 3$ oe	3	C2 for one correct with supporting working or both answers without working or M1 for correct method to eliminate one variable reaching such as $26x = k$, $hx = 130$, 13y = p, $qy = -39$ or multiples of these.
26	(a) Correct reduction to $2x^2 + x - 15 = 0$	2	M1 for $(2x + 3)(x - 1) = 12$
	(b) 2.5 −3	2	C1 for one correct with supporting working or both with signs reversed or both correct and no working or B1 for $(2x - 5)(x + 3)$ or $\frac{-1 \pm \sqrt{1^2 - 4 \times 2 \times (-15)}}{2 \times 2}$ seen
	(c) 19	1ft	ft 6(their positive x) + 4