ZIMBABWE SCHOOL EXAMINATIONS COUNCIL

General Certificate of Education Advanced Level

RoFo Tadu

MARKING SCHEME

JUNE 2011

PHYSICS 9188/2

- Random error is due to the observer while systematic error is due to (a) B1 the instrument. B1
 - (b) (i) 1. Check zero error B1
 - take readings spirally and average-B1
 - 3. take readings at different points and average B1

(ii)
$$R = \left(\frac{V}{\pi L}\right)^{\frac{1}{2}} = \left(\frac{25}{\pi \times 20 \times 10^{-2}}\right)^{\frac{1}{2}}$$

$$=$$
 6,3078 m $-$ C1

$$\frac{\Delta R}{R} = \frac{1}{2} \frac{\Delta V}{V} + \frac{1}{2} \frac{\Delta L}{L}$$

$$= 0.5 \times \frac{0.3}{25} + \frac{0.5 \times 0.1}{20} = 0.0085$$

$$\Delta R = 0.05$$

$$= 0.05$$

$$\Delta R = 0.05$$

$$\therefore R = (6.31 \pm 0.05) \text{ m}$$
/pt masses

2 The force of attraction between two particles is directly proportional to (a) B1 the product of their masses

> and inversely proportional to the square of the distance between their centres of mass. B1

(b) A satellite which is always at the same point above the earth's (i) surface (and has a period of 24 hours) B1

(ii)
$$F = \frac{GMm}{r^2} = m\omega^2 r$$

$$r^{3} = \frac{GM}{\omega^{2}}$$

but
$$g = \frac{GM}{R}$$
 C1

$$r^3 = \frac{gR}{\omega^2}$$

$$r = \sqrt[3]{\frac{gR}{\omega^2}}$$
 AO

	3	(a)	(i)	Programs falls and	
	5	(a)	(1)	Pressure falls when velocity rises or vice-versa	B1
			(ii)	- lamina flow - liquid to be compressible / constant density - liquid should be non-viscous / no frictional for	B1 B1 CCS B1 Max 2
		(b)	(i)	$A_1 V_1 = A_2 V_2$	
				$60 \times 2,3 = 5,5 \text{ V}_2$	C1
			(;;)	$V_2 = 25,09 \text{ ms}^{-1} \text{ G25 m5}$ $a(cepf) 25,0 \text{ m5}$	A1
			(ii)	$P_1 + \frac{1}{2}\rho V_1^2 = P_2 + \frac{1}{2}\rho V_2^2$	
				$P_1 - P_2 = \frac{1}{2} \times 800(25,09^2 - 2,3^2)$	C1
a ^S				$= 2.50 \times 10^5 \text{Pa} 2.48 \times 10^5 \text{Pa}$	A1
4		(a)		collisions between particles and walls are perfectly elastic Newtonian mechanics can be applied Volume occupied by molecules is negligible compared to	B1 B1
			-	volume of container time of collision is negligible as compared to time between collisions	B-1
			2000	intermolecular forces are negligible malecules are in Cartinuaus rando	B1 B1 Max 4
		(b)	(i)	p.e is due to attraction of molecules ke is due to motion of molecules	BI BI
			(ii)	no intermolecular forces imply that potential energy is zero	B1
5		(a)	(i)	angle of deflection should be about 180°	B1
			(ii)	$E_k = \frac{Qq}{4\pi\varepsilon_o r}$	M1
				$4,8 \times 10^{6} \times 1,6 \times 10^{-19} = \frac{79 \times 2 \times (1,6 \times 10^{-19})^{2}}{4\pi\varepsilon_{o}r}$	C1
				$r = 4.74 \times 10^{-14} \text{m}$	AI

	(b)	-	tracers thickness control cancer treatment carbon dating sterilisation of medical equipment	B1 B1 B1
		R. C. Carlotte	generating electricity	B1 Max 3
6	(i)	Firs	Total Current arriving at a junction equals total current leaving junction Z I = O	the B1
		Seco	nd Round any closed loop the algebraic sum of the e.m.f. E is eque to the algebraic sum of the products of current I and resistance	ual R B1
	(ii)	<u>First</u>	charge $\sum EMF = \sum IR$	B1
		Seco	nd energy Reject for mis-mat ck	B1
7	(a)	(i)	1. Overlapping of two or more waves to produce a combine effect.	ed B1
		- *	2. Bending of waves when passing through an opening or round an obstacle	B1
	w a	(ii)	sources must be coherent (anstant phase different sets of waves must have approximately the same amplitude $-$ saurces and be very close to each $d\sin\theta = n\lambda$	2
	(b)	(i)	$d\sin\theta = n\lambda$	10xx 2.
×			$\frac{1 \times 10^{-3}}{900} \sin \theta = 1 \times 630 \times 10^{-9}$	C1
		<i>(</i> '')	$\theta = 38.4^{\circ} 34.5$	A1
		(ii)	maximum is when $\sin \theta = 1$	B1
	14		$n = \frac{a}{\lambda} / 2^{nd} \text{ order } - 69, 1$	
				30×10 []
			= 1,76 = 2	C1
			There are 2 bright fringes – one on each side of the central maxima	A1

8	(a)	(i)	microphone/solar cell/LDR/Thermistor/strain gauge	B1
		(ii)	loudspeaker/buzzers/LED/Relay	B1
	(b)	(i)	Part or whole of output fed back to the inverting input	B1
		(ii)	gain less affected by temperature changes Bandwitdth is greater input signal can be stronger without causing saturation	B1
			and therefore reduced distortion	B1 Max 2
9	(a)	(i)	Any metal Spraphile Sodium chlonicle	B1
		(ii)	Glass (wax)	B1
		(iii)	Rubber (wool, plastics, nylon), terylene	B1
	(b)	in elas	stic deformation, material returns to original shape when deforming have been removed	9
		while	plastic deformation does not return to original shape.	B1
	(c)	(i)	Hooke's law is obeyed Extension proportional to force	B=M .
		(ii)	strain energy = $\frac{1}{2}Fe$	C1
			$= \frac{1}{2}.25 \times 0,20$	g
		¥	= 2,5 J	A1