Candidate Name

 \bigcirc

 ∞

6 4

∞ 2 Candidate Number

ZIMBABWE SCHOOL EXAMINATIONS COUNCIL General Certificate of Education Ordinary Level

MATHEMATICS PAPER 1

4008/1, 4028/1

NOVEMBER 2006 SESSION

2 hours 30 minutes

Candidates answer on the question paper. Additional materials: Geometrical instruments

TIME 2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided on the question paper.

If working is needed for any question it must be shown in the space below that question. Omission of essential working will result in loss of marks.

Decimal answers which are not exact should be given correct to three significant figures unless stated otherwise.

Mathematical tables, slide rules and calculators should not be brought into the examination room.

· INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.

	FOR	EXA	MINE	R'S	USE
--	-----	-----	------	-----	-----

[Turn over

This question paper consists of 27 printed pages and 1 blank page.

Copyright: Zimbabwe School Examinations Council, N2006.

©ZIMSEC N2006

NEITHER MATHEMATICAL TABLES NOR SLIDE RULES NOR CALCULATORS MAY BE USED IN THIS PAPER

- (a) From the set of natural numbers write down
 - (i) the first three prime numbers,
 - (ii) the first three square numbers.
- (b)

1

Express 980 as a product of its prime factors.

4008/1 4028/1 N2006

(b)

Answer

(a) (i) _____[1]

(*ii*) _____[1]

[1]

_Fo Exami

- (a) $5 \times x^0$,
- (b) $8^{-\frac{1}{3}}$,
- (c) $\frac{6\times10}{6+4}$.

Solve the equations

 $(10,7)^{*}$ $5^{*} = \frac{1}{25}$,

(b) $4y^2 = 9$.

4008/1 4028/1 N2006

4

4

Exa

¥.

S

For Examiner's Use

Simplify as far as possible

4

6666.

(.)
$$\frac{2p^2}{3q} \times \frac{9q^2}{8p^3}$$
,
(b) $3(6x-5) - 2(4x-7)$.

Answer (a)	[1]
(b)	[2]
4008/1 4028/1 N2006	[Turn over

- Three brothers aged 36 years, 24 years and 18 years share \$5,2 million in the ratio Examin Use of their ages.
 - Write down the ratio of their ages in descending order and in its simplest (a) form.
 - (b) Calculate the youngest brother's share.

Answer

(a)[1] *(b)* \$_____ _[2]

4008/1 4028/1 N2006

For

÷.

Three brothers aged 36 years, 24 years and 18 years share \$5,2 million in the ratio Examin Use of their ages.

For

- Write down the ratio of their ages in descending order and in its simplest (a) form.
- Calculate the youngest brother's share. (b)

5

Ţ

4008/1 4028/1 N2006

Answer

(a)_____

(b) \$_____[2]

[1]

.

Fc

Exam Ui

For the numbers 10; 2; 9; 3; 9; 5, find ...

.

- (a) the mode,
- (b) the median,
- (c) the mean.

7

5)

4008/1 4028/1 N2006

.13	(a)	Given that $a^{v} = 36$ and $a^{v} = 4$, write down the numerical-value of a^{v-v}	F Exan
	(b)	Solve the inequality $8 \le 3x - 7 < 19$.	L
•	. •		. '
·	·		
•			
		Answer (a) [1]	·
		(b)[2]	
		4008/1 4028/1 N2006	
	·		

\$

Fc

Exam U:

15 In 2002 the cost of a new luxury car was \$254 million. -

(a) write Cown 254 million in figures only.

- (b) Hence express \$254 million in standard form.
- (c) If a company bought 8 such cars for its directors, calculate the amount, in billions of dollars, the company spent on the cars.

Answer	(a)	[1]
	(b) \$	[1]
	(c) \$	billion [2]
in a start and a start		

4008/1 4028/1 N2006

In the diagram, AB = (x+3) cm, BC = (x-2) cm, AC = 9 cm and $\hat{ACB} = 90^{\circ}$.

- (a) Form an equation in x.
- (b) Solve this equation.

- 16

(c) Hence write down the length of the hypotenuse.

For Examiner' Use

In the diagram, AB, BC and CD are three sides of a regular hexagon.

Calculate **(a)**

17

- (i) ABC,
- (ii) CDA.

(b) Draw the diagonals of quadrilateral ABCD and name the triangle which is congruent to triangle ABD.

4008/1 4028/1 N2006

~16

For

Examiner' Use

18	It is g	iven th	at $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ -4 & -2 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} -4 \\ y \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} -14 \\ 20 \end{pmatrix}$.	For Examiner' Use
	Find	(a)	A ⁻¹ ,	
		(b)	the value of y such that $AB = C$	

(b) $y =$	[2]
Answer (a) $A^{-1} =$	[2]

~17

In the diagram, TE is a tangent to the circle centre O. AOD is a straight line, arc ED = arc DC and TÊA = 70°.

Calculate

- (a) EÂD,
- (b) CÂD,
- (c) ABC.

4008/1 4028/1 N2006

The diagram shows a dartboard of total face area $1\ 200\ \text{cm}^2$. The targets are a square, two trapezia, two rectangles, two triangles and two rhombuses. Darts are thrown at the dartboard. If a target is hit the score is recorded. The table below gives more information about the targets on the dartboard.

TARGET	AREA OF EACH TARGET (cm ²)	SCORE PER TARGET
Triangle	45	10
Square	50	9
Rectangle	60	6
Rhombus	·100	5
Trapezium	200	2

4008/1 4028/1 N2006

For Examiner' Use

Answer (a) On diagram. [1]

(b) On diagram. [2]

(c) On diagram. [2]

4008/1 4028/1 N2006

्र २

Giving your answer as a common fraction, calculate the probability of

(a) $\operatorname{scoing} a 10$ from one throw,

•----

- (b) an odd score from one throw,
- (c) a total score of 7 from two throws.

4008/1 4028/1 N2006

For Examiner': Use

103

For Examiner's • Use

Given that V varies inversely as the square of t_{i} ,

- (2) express V in terms of t and a constant k_i ,
- (b) find

(i)

the value of k given that V = 25 when t = 2,

(ii) the values of t when $V = \frac{1}{4}$.

Answer (a) V = [1] (b) (i) k = [2] (ii) t = or [2] 4008/1 4028/1 N2006 [Turn over]

For Examiner Use

(a) Using ruler and compasses only, construct, inside the sector,

(i) the locus of points equidistant from B and P,

- (ii) the locus of points $4\frac{1}{2}$ cm from P.
- (b) Shade the region inside the sector which contains points which are more than $4\frac{1}{2}$ cm from P and nearer to P than to B.
- (c) Taking π to be 3,14, calculate the area of the sector OABC.

Answer	(a) (((i) On diagram. (ii) On diagram.	[2] [1]
	<i>(b)</i>	On diagram.	[1]
	(c)		$_{\rm cm^{2}}$. [2]

The diagram shows the graph of $y = 6 - 2x - \frac{1}{2}x^3$ for $-2 \le x \le 2$. (a) Draw a straight line joining the points (2; 0) and (-2; 12).

(b) Write down the equation of this line in the form y = mx + c.

4008/1 4028/1 N2006

- (c) Write down the x-values of the points of intersection of this line and the curve $y = 6 2x \frac{1}{2}x^3$.
- (d) Estimate the area bounded by the curve $y = 6 2x \frac{1}{2}x^3$, the x-axis and the y-axis.

4008/1 4028/1 N2006

For Examiner's Use

NOV 2006 PAPER 1

$N = \{1, 2, 3, 4, 5, 6,\}$	
1(a) (i) 2, 3, 5	(b) $2 980$
(iii) 1, 4, 9	2 490
	5 245
	7 49
	7 7
	$980 = 2 \times 2 \times 5 \times 7 \times 7$
2 (a) $5 \times x^0 = 5 \times 1$	
= 5	$\frac{1}{10} \frac{1}{10}$
•	6+4
(b) $8^{-1/3} = 1$	
<u></u> <u>8¹/3</u>	60
- 1	10
$-\frac{1}{3\sqrt{9}}$	
	= 6
= 72	
3 (a) $5^x = 5^{-2}$	(b) $2/4x^2 = 10$
x = -2	$(0) \forall 4y = \forall 9$
	$2y = \pm 3$
	2y = 3 or $2y = -3$
	$y = \frac{3}{2}$ or $y = -\frac{3}{2}$
1(0) 0 2 0 0	
$+(a) 2p^{-} \times ()q^{2}$	(b) $3(6x-5) - 2(4x-7)$
$3q = 8p^3$	(11 0) 2(11 - 1)
	18r - 15 - 8r + 14
$= \underline{18p^2q^2}$	$10^{-}0^{-}10^{-$
$24qp^3$	18r - 8r = 15 + 14
	101 - 101 + 14
$= \sqrt[3]{4p^{2-3}q^{2-1}}$	10r - 1
	10.4 - 1
$= {}^{3}\!$	
= 3q	
4p	
5(a) 36 · 24 · 18	
6: 4: 2	(b) $3 \times $5\ 200\ 000$
0.4.5	13
	= \$1 200 000
6 (a) 99,996	(b) $1\times^{2}$ + 2 + 2 = 2 = 20
= 100,00	(0) $1\times 6 + 2\times 8 + 3\times 8^{\circ} - 52$
	83 - 52
	= 31
	<u>8 31</u>
	$ 3 r 7 \uparrow$
and the second	0 r 3
	$= 37_{8}$

	110
7 (a) mode = 9	(c) mean = $10 + 2 + 9 + 3 + 9 + 5$
(b) modion 2 2 5 0 0 10	6
(b) median = 2, 3, $5, 9, 9, 10$	
$= \frac{3+9}{2}$	= <u>_38</u>
2	6
= 14	- 61/
2	
= 7	
$8 x^2 - 25$	$\mathbf{P}(l) = 2 + 2 - 15$
$\frac{1}{x^2 - 2x - 15}$	9 (1) 2x + 2y = 15 (2) 02 + 02 0
	(2) 0.3x + 0.2y = 3
(x+5)(x-5)	2x + 2y = 15 3x + 2y = 20
$x^2 + 3x - 5x - 15$	3x + 2y = 30
	-x15
(x+5)(x-5)	$\lambda - 15$
x(x+3) - 5(x+3)	2(15) + 2y = 15
	30 + 2y = 15
(x+5)(x-5)	2y = 15 - 30
(x-5)(x+3)	$\frac{2y}{2} = -15$
	$\frac{2}{2}$
x+5	
x + 3	y = -7,5
$10 m = \sqrt{\frac{1-y}{1+y}}$	11 (a) 0
	(b) $30:240 \times 100\ 000$
$m^2 = 1 - \gamma$	30:24 000 000
1 + y	1:800 000
-2(1) , 1	
$III(1+y) = 1 - y$ $m^2 + m^2 y = 1 - y$	
m + m y = 1 - y $m^2 y + y = 1 - m^2$	
my + y - 1 - m $y(m^2 + 1) - 1 - m^2$	
$(m^2 + 1)$ $(m^2 + 1)$	
$y = \underline{1 - m^2}$	
$m^2 + 1$	
12 (a) Bearing of Q from	(b) Area = $\frac{1}{2}$ base x height
$T = 180^{\circ} + 30^{\circ}$	A series a series of the serie
= 210°	$=\frac{1}{2}\times20\times10\sqrt{3}$
	$= 10 \times 10$ \sqrt{3}
and in the second s	$= 100\sqrt{3} \text{ km}^2$

11	1	
13 (a) $a^x = 36$ and $a^y = 4$	(b) $8 \le 3x - 7$	3x - 7 < 19
$a^{x-y} = \underline{a^x}_{a^y}$	$15 \leq 3x$	3x < 19 + 7
$= \frac{36}{4}$	$5 \leq x$	$\frac{3x}{3} < \frac{26}{3}$ $x < 8^2/_3$
= 9	$5 \le x < 8^2/$	3
14 (a) $Q' = \{\sqrt{13}\}$	15 (a) 254 000 000	
(b) $Z = \{-3; \sqrt{36}; \sqrt{64}/_{16}\}$	(b) $$2,54 \times 10^8$	
	(c) 25400000×8 = $2032000000 \div$ = \$0,002032 billi	10 ¹² ion
16 (a) $(x+3)^2 = 9^2 + (x-2)^2$	(c) 7,6 + 3	
(b) $(x + 3)^2 = 9^2 + (x - 2)^2$	= 10,6 cm	
(x+3) (x+3) = 81 + (x-2) (x-2)		
$x^{2} + 3x + 3x + 9 = 81 + x^{2} - 2x - 2x + 4$		
$x^2 + 6x + 9 = 81 + x^2 - 4x + 4$		
$x^2 + 6x + 9 = 85 + x^2 - 4x$		
$x^2 - x^2 + 6x + 4x = 85 - 9$		
$\frac{10x}{10} = \frac{-76}{10}$		
<i>x</i> = 7,6		
17 (a) (i) $ABC = 6 - 2(180)$ 6	(ii) $CDA = 360 - (120)^{-1}$	<u>) × 2)</u>
= 4(180) 6	= <u>120</u> 2	
$= \frac{760}{6}$	= 60	
= 120°	(b) CAB is congruent to	o BDC

11	
18 (a) A^{-1} , $A = \begin{bmatrix} 2 & 3 \\ -4 & -2 \end{bmatrix}$ det = 2 × -24 × 3 = -4 + 12	(b) $AB = C$ $\begin{bmatrix} 2 & 3 \\ -4 & -2 \end{bmatrix} \begin{bmatrix} -4 \\ y \end{bmatrix} = \begin{bmatrix} -14 \\ 20 \end{bmatrix}$ $\begin{bmatrix} -8 + 3y \\ 16 + 2y \end{bmatrix} = \begin{bmatrix} -14 \\ 20 \end{bmatrix}$
$= 8$ $A^{-1} = \frac{1}{8} \begin{bmatrix} -2 & -3 \\ 4 & +2 \end{bmatrix}$.	$\begin{vmatrix} -8 + 3y = -14 & \text{or} & 16 - 2y = 20 \\ 3y = -14 + 8 & \text{or} & -2y = 20 - 16 \\ \hline \frac{3y}{3} = \frac{-6}{3} & \frac{-2y}{-2} = \frac{4}{-2} \\ y = -2 & y = -2 \end{vmatrix}$
19 (a) $E\hat{A}D = 20^{\circ}$ (b) $C\hat{A}D = 20^{\circ}$ (c) $ABC = 110^{\circ}$	
20 (a) $\cos PQS = \frac{5^2 + 9^2 - 12^2}{2 \times 5 \times 9}$ = $\frac{25 + 81 + 144}{90}$ = $-\frac{19}{45}$	(b) $\cos RQS = -(-^{19}/_{45})$ = $\frac{19}{45}$
21 (a) P(scoring a 10) = 45×2 1200 = 90 1200 = 3 40	(b) P(odd score) = $\frac{50 + 100 \times 2}{1200}$ = $\frac{250}{1200}$ = $\frac{5}{24}$
(c) P (2, 5) or (5, 2) $\frac{2 \times 200}{1200} \times \frac{2 \times 100}{1200} \text{ or } \frac{2 \times 100}{1200} \times \frac{2 \times 200}{1200}$ $\frac{1}{1200} + \frac{1}{18}$ $= \frac{2}{18} = \frac{1}{-9}$	

AND DESCRIPTION OF

AND A DESCRIPTION OF A

•

,

23 (a) $V = \underline{k}_{t^2}$	(b) (ii) $\frac{1}{4} = \frac{100}{t^2}$ $t^2 = 400$ $t = \sqrt{400}$ = 20 or -20 25 (a) $\frac{50}{20}$		
(b) $25 = \frac{k}{2^2}$			
100 = k			
24 (c) $120 \times 3,14 \times 6^2$ 360			
$= 37,68 \text{ cm}^2$	$= 2,5 \text{ m/s}^2$		
25 (b) $\frac{1}{2} \times (10+60) \times 20+2T-20 \times 10+3T-2T \times 10 = 100$	1,5km (c) Time taken = 100×3		
700 + 20T - 200 + 30T - 20T = 1500	3 = 100s		
500 + 30T = 1500	Average speed = 1500		
30T = 1500 - 500	100		
$\frac{30T}{30} = \frac{1000}{30}$	= 15m/s		
$T = 33^{1}/_{3}$			
26 (b) $y = mx + c$ m: gradient	(c) $x = 1,4$ or $-1,5$		
c: where the line cuts the y-axis $gradient = 6$	(d) Area = $306 \times \frac{1}{25} \text{ cm}^2$ = 12,24 cm ²		
-2			
= -3			

[13

MATHEMATICS

PAPER 2

NOVEMBER 2006 SESSION

2 hours 30 minutes

Additional materials:

Answer paper Geometrical instruments Graph paper (3 sheets) Mathematical tables Plain paper (1 sheet)

TIME 2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces provided on the answer paper/answer booklet.

Answer all questions in Section A and any three questions from Section B.

Write your answers on the separate answer paper provided. If you use more than one sheet of paper, fasten the sheets together.

Electronic calculators must not be used.

All working must be clearly shown. It should be done on the same sheet as the rest of the answer.

Omission of essential working will result in loss of marks.

If the degree of accuracy is not specified in the question and if the answer is not exact, the answer should be given to three significant figures. Answers in degrees should be given to one decimal place.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question. Mathematical tables may be used to evaluate explicit numerical expressions.

This question paper consists of 13 printed pages and 3 blank pages.

Copyright: Zimbabwe School Examinations Council, N2006.

OZIMSEC N2006

[Turn over

		عر. ا	Section A: [64 marks]	
		- 	Answer all the questions in this section.	
1	(a)	Eva low	luate $5\frac{1}{4} - 1\frac{2}{3} \times 2\frac{1}{10}$, giving your answer as a mixed number in its est terms.	
•	(b)	Non its s	na has $(4x - 3y)$ dollars and Rudo has $(5x - y)$ dollars. Find, in implest form, the amount of money	[3]
		(i)	they have altogether,	
(ii) (c) If f		(ii)	Rudo has more than Noma:	[3]
	$f(x) = x^3 - 3x^2 + kx - 4$, find k given that $f(3) = 11$.	[2]		
2	(a)	Facto	prise completely	
		(i)	3mp + np - 6mq - 2nq,	
		• (ii)	$16 - 9r^2$.	
	(b)	It is g	iven that	[4]
	·		$A = \pi r \left(h^2 - r^2 \right).$	•
		(i)	Make <i>h</i> the subject of the formula.	
		(ii)	Find the value of h when $A = 330$ $r = 7$ and $= 22$	·

4008/2 N2006

In a class of 40, every pupil studies at least one of the subjects Mathematics, Geography and Accounts.

4 pupils study Mathematics and Geography,

5 study Mathematics and Accounts.

7 study Geography and Accounts.

15 study Mathematics only,

13 study Geography only and

4 study Accounts only.

[3] Find the number of pupils who study all the three subjects.

(b) Express
$$\frac{b}{a^2 - ab} + \frac{a}{b^2 - ab}$$
 as a single fraction in its lowest terms. [4]

Solve the equation (c)

$$\frac{1}{2-m} - \frac{3}{m-4} = 0.$$

3

(a)

2

4008/2 N2006

[Turn over

[3]

Take π to be 3,142.

1

The diagram shows a clockface in the shape of two regular concentric octagons centre O. O, A and B are in a straight line, BO = 6 cm and AO = 5 cm. The area between the octagons is decorated.

[2]

[5]

[2]

- (a) Determine the size of AOD.
- (b) Calculate
 - (i) the area of $\triangle AOD$,
 - (ii) the area of $\triangle BOC$,
 - (iii) the area that is decorated.
- (c) Calculate the angle through which the minute hand turns in 18 minutes. [2]
- (d) If the length of the minute hand is 4 cm, calculate the distance the tip of the minute hand moves in 18 minutes.

4008/2 N2006
(a) Given that
$$M = \begin{pmatrix} 4 & -9 \\ -2 & 5 \end{pmatrix}$$
, $N = \begin{pmatrix} 1 & 3 \\ 0 & -1 \end{pmatrix}$ and $L = \begin{pmatrix} 2d & 4 \\ 1 & 3 \end{pmatrix}$, find
(i) $M + 2N$,
(ii) MN ,
(ii) the value of d which makes matrix L singular.
(b) $P = \frac{2p}{3q} + \frac{3p-q}{2}$,
(b) $P = \frac{2p}{3q} + \frac{3p-q}{2}$,
(c) $R = \frac{3p-q}{3q}$,
In the diagram, PRT and OQT are straight lines. $\overline{OP} = 2p$, $\overline{OQ} = 3q$
and $\overline{PR} = 3p-q$.
(i) Express \overline{RQ} as simply as possible in terms of p and/or q.
(ii) Given that $PT = mPR$, express \overline{PT} in terms of p, q and m.
(iii) Given also that $OT = nOQ$ form an equation connecting
p, q, m and n. Hence find the value of m and the value of n.
[4]

.

5

4008/2 N2006

¥

[Turn over

6	Ansy	Answer the whole of this question on a sheet of plain paper							
	Use r lines	uler an and ar	nd compasses only for all constructions and clearly show all constructions and clearly show all constructs on a single diagram.	uction :					
	(a)	Cons CD =	Construct a quadrilateral ABCD in which $AB = 4 \text{ cm}$, $BC = 6 \text{ cm}$, $CD = 5 \text{ cm}$, $ABC = 135^{\circ}$ and $BCD = 120^{\circ}$. [6] Measure and write down						
	(b)	Meas							
		(i)	the length of AD,						
•		(ii)	BÂD.	ີ [ວັງ					
	(c)	Cons	Construct the locus of points						
		(i)	equidistant from AB and BC,						
		(ii)	3 cm from BC and on the same side of BC as A,						
	•	(iii)	4 cm from B.	[5]					

-- Section B: [36 marks]

Answer any three questions from this section.

(a) Solve the equation

7

 $2x^{2} + 6x + 1 = 0$, giving your answers to 2 decimal places.

[5].

[3]

(b) A geographical globe has a diameter of 48 cm. A miniature model of the globe has a diameter of 8 cm.

- (i) Calculate the surface area of the model.
- (ii) On the globe, the map of Zimbabwe occupies an area of 23,04 cm². Calculate the corresponding area on the model. [4]

(c) If the globes are solid, calculate the volume of the model.

Volume of a sphere $= \frac{4}{3}\pi r^3$ Surface area of a sphere $= 4\pi r^2$ Take π to be 3,142

State the vertical scale.

- (b) Use the region R to answer the following questions.
 - (i) Write down 3 inequalities other than $y \le -\frac{2}{5}x + 32$ which define R.
 - (ii) State the maximum value of y.
 - (iii) Given that (x; y) is a point inside the region R and that x and y are integers, write down the value of x and the value of y which make (x + y) a maximum.

\$ 147-

(iv) Find the maximum value of 40x + 20y. [11]

9 Answer the whole of this question on a sheet of graph paper.

The following is an incomplete table of values for the function $y = \frac{12}{r} - 1$.

x	1	2	3	4	5	6	7	8
y .	11	5	• 3	2	р 1 ₃ ц	1	0,7	q Q

(a) Calculate the value of p and the value of q.

- (b) Using a scale of 2 cm to represent 1 unit on the x-axis and 2 cm to represent 2 units on the y-axis, draw the graph of $y = \frac{12}{x} 1$ for $1 \le x \le 8$.
- (c) Use the graph to estimate
 - (i) the gradient of the curve at x = 2,
 - (ii) the area of the region between the curve, the x axis and the lines x = 3 and x = 6. [4]

4008/2 N2006

[Turn over

[2]

[4]

(d) On the same axes, draw the graph of $y = x \pm 4$.

Hence solve the equation
$$\frac{12}{x} = x + 4$$
. [2]

1\$4-8

10 (a)

In the diagram, A, B, C and D are points on the circumference of a circle centre O. ABT is a straight line and CT is a tangent to the circle at C. $ABC = 71^{\circ}$ and $BCO = 47^{\circ}$.

Calculate

- (i) reflex AÔC,
- (ii) CBT,
- (iii) BĈT,
- (iv) BÂO.

State why $\hat{ADC} = \hat{CBT}$.

[5]

10 n n

The electricity bills of a certain household for the months of December 2004 and January 2005 are shown below.

December 2004						
Description	Previous Reading	Present Reading	Consumption	Rate (cents)	Tota \$	al c
Balance b/f					3 150,	99
Payment					3 151,	,00CR
Energy charge	31 565	31 834	269	m	1 894,	,57
Fixed monthly					1 520	40
charge		8. ·			262	,49 76
Value Added Tax(VAT)				202	,70
Amount Due			· .		2 700	,01
January 2005)		
Description	Previous	Present	Consumption	Rate	То	tal
Description	Reading	Reading		(cents))\$	С
					2 788	3,81
Datance 0/1 Dayment			,		5 000),00CR
Energy charge	31 834	32 331	n	1 909	9 490	5,84
Fixed monthly					1:06	7.69
charge	(T/ AT')				1 25	3,00
Amount due					q	
(a) Find the v	values of m, n and	nd q .				[5]
(b) Calculate	с. -					
(i) th	e rate at which	Value Added T	ax (VAT) was cl	narged in	1 Dece	mber,

the percentage increase in the monthly fixed charge for the two months. (ii) [7]

4008/2 N2006

1.1 Answer the whole of this question on a sheet of graph paper.

The table below shows the marks of 50 pupils in an entrance test marked out of 100.

Mark <u>x</u>		$20 < x \le 30$	$30 < x \le 45$	45 < <i>x</i> ≤ 50	$50 < x \le 60$	$60 < x \le 70$	$70 < x \le 80$	80 < 1 ≤ 100
Freque f	ency	2	5	4	16	14	6	3
(a)	State	e the modal	class.	· · · · · · · · · · · · · · · · · · ·				[]]
(b)	Calculate an estimate of the mean mark.							[1]
(c)	Find belo	the value o	f m and the	value of <i>n</i> in	n the frequer	ncy density	table	[3]
								[2]

IVIALK							
<u>x</u>	$20 < x \le 30$	$30 < x \le 45$	$45 < x \le 50$	$50 < x \le 60$	$60 < x \le 70$	$70 < x \le 80$	$80 < x \le 100$
Frequency	2	5	4	16	1.4		
Frequency	0.20		,	10	14	6	3 •
density	0,20	0,33	т	1,60	1,40	0,60	n
		L				,	· · · ·

(d) Using a scale of 2 cm to represent 10 marks on the horizontal axis and 4 cm to represent 1 unit on the vertical axis, draw a histogram to represent this information.

[4]

(e) Any mark above 50 was considered a pass. If two pupils were chosen at random, calculate the probability that both passed the test.

[2]

$1(a) 5\frac{1}{4} - \frac{1\frac{2}{3} \times 2^{1}}{10}$	(b) $4x - 3y + 5x - y$
$\frac{21}{4} - \frac{8}{3} \times \frac{21}{10}$	c $5x - y - (4x - 3y)$
$\frac{21}{4} - \frac{7}{2}$	$\frac{3x - y - 4x + 3y}{x + 2y}$
$\frac{21-14}{4}$	(c) $3^3 - 3(3)^2 + k(3) - 4 = 11$ = 27 - 27 + 3k - 4 = 11 3k = 11 + 4
$=\frac{7}{4}$	3k = 15 k = 5
= 1¾	
2(a) 3mp + np – 6mq – 2nq p(3m + n) – 2q(3m + n) (p – 2q) (3m + n)	(c) $h = \sqrt{\frac{A}{\pi r} + r^2}$
(b) $A = \pi r(h^2 - r^2)$ <u>A</u> = $h^2 - r^2$ πr	$= \sqrt{\frac{330}{\frac{22}{7} \times 7}} + 7^{2}$
$\frac{A}{\pi r} + r^2 = h^2$	$=\sqrt{\frac{330}{22}}+49$
$\sqrt{\frac{A}{\pi r} + r^2} = h$	$ = \sqrt{(15+49)} = \sqrt{64} = 8 $
3(a)	x study all the three
G	15 + 4 - x + x + 5 - x + 7 - x + 13 + 4 = 40
$\begin{pmatrix} 4-x \\ 15 \end{pmatrix} = 13$	48-2x=40
$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$	48-40=2x
5-x $7-x$	8 = 2x
$\left \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	4 = x
A	.'. 4 study all the three

3(b) $b(b^2 - ab) + a(a^2 - ab)$ (a ² - ab) (b ² - ab)	(c) Solve the equation $\frac{1}{2-m} - \frac{3}{m-4} = 0$
$\frac{b^3 - ab^2 + a^3 - a^2b}{(a^2 - ab)(b^2 - ab)}$	$\frac{1}{2-m} = \frac{3}{m-4}$
$\frac{b^{2}(b-a) - a^{2}(-a + b)}{(a^{2} - ab) (b^{2} - ab)}$	1(m - 4) = 3(2 - m) m - 4 = 6 - 3m
$\frac{(b^2 - a^2)(b - a)}{(a^2 - ab)(b^2 - ab)}$	$\frac{4m}{4} = \frac{10}{4}$
$\frac{(b^2 - a^2)(b - a)}{a^2(b^2 - ab) - ab(b^2 - ab)}$	m = 2,5
$\frac{(b^2 - a^2)(b - a)}{a^2b^2 - a^3b - ab^3 + a^2b^2}$	
$\frac{(b^2 - a^2) (b - a)}{a^2 b(b - a) - ab^2(b - a)}$	
$\frac{(b^2 - a^2)(b - a)}{(a^2b - ab^2)(b - a)}$	
$\frac{b^2 - a^2}{-ab(-a+b)}$	
= (b + a) (b - a) = b + a -ab(-a + b) ab	
4(a) $A\hat{O}D = \frac{1}{8} \times 360$ = 45°	In 15minutes it turns 90° .'. in one minute <u>90</u> 15
(b)(i) Area of $A\hat{O}D = \frac{1}{2}ab\sin\theta$ = $\frac{1}{2}\times6\times6\sin45$ = 12 728	$= 6^{\circ}$
= 12,720 = 12,7cm ² (ii) Area of BOC = $\frac{1}{2}absin\Theta$ = $\frac{1}{2}absin\Theta$	$= 108^{\circ}$
$= \frac{72 \times 7 \times 751145}{= 24,55in45}$ $= 17,324$	(u) <u>0</u> × 2/0 360
= 17,3cm ² Area of decorated part = $(\frac{1}{2} \times 7 \times 7 \sin 45 - \frac{1}{2} \times 6 \times 6 \sin 45) \times 8$	$= 180 \times 2 \times 22^{1} \times 4$ 360 * 7 = 7 ¹⁹ / ₃₅ cm
$= (17,324 - 12,728)8cm^{2}$ = 4,596 × 8 cm ² = 36,768cm ²	= 7,54286 = 7,5cm
$= 36,8 \text{cm}^2$,

5(a)(i) $\begin{pmatrix} 4 & -9 & + & 2 & 1 & 3 \\ -2 & 5 & & 0 & -1 \end{pmatrix}$ $\begin{pmatrix} 4 & -9 & + & 2 & 6 \\ -2 & 5 & & 0 & -2 \end{pmatrix}$ = $\begin{pmatrix} 6 & -3 \\ -2 & 3 \end{pmatrix}$ (ii) $\begin{pmatrix} 4 & -9 \\ -2 & 5 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 0 & -1 \end{pmatrix}$	5(b)(i) $RQ = RP + PO + OQ$ = $-3p+q-2p+3q$ = $4q - 5p$ (ii) $PT = mPR$ = $m(3p - q)$ = $3mp - mq$ (iii) $OT = nOQ$ = $n(3q)$ = $3nq$
$ \begin{pmatrix} 4 \times 1 + -9 \times 0 & 4 \times 3 + -9 \times -1 \\ -2 \times 1 + 5 \times 0 & -2 \times 3 + 5 \times -1 \end{pmatrix} $	PT = OP + OT = -2p + 3nq
$= \begin{pmatrix} 4 & 21 \\ -2 & -11 \end{pmatrix}$ (iii) $2d \times 3 - 1 \times 4 = 0$ 6d - 4 = 0	.'. $3mp - mq = -2p + 3nq$ 3mp = -2p -mq = 3nq p p -(-2/3)q = 3nq
$\frac{6d}{6} = \frac{4}{6}$	$3m = -2$ $m = -\frac{2}{3}$ $\frac{2}{3}q = 3nq$ q q $\frac{2}{3} = 3n$
$d = \frac{4}{3}$	n = <u>2</u> 9

7(a) $2x^2 + 6x + 1 = 0$; a=2 b=6 c=1 (b)(i) Surface area = $4\pi r^2$ $= 4 \times \frac{22}{7} \times 4^2$ $x = -b \pm \sqrt{b^2 - 4ac}$ 2a $= \frac{-6 \pm \sqrt{6^2 - 4 \times 2 \times 1}}{2 \times 2}$ $= 201^{1}/_{7} \text{cm}^{2}$ (ii) ratio of side = 8:48 $= -6 \pm \sqrt{36 - 8}$ 1:6ratio of area = 1^2 : 6^2 = 1 : 36 $= \frac{-6 \pm \sqrt{28}}{4}$.'. Area on the model = 23,04= <u>-6 + 5,2915</u> or <u>4</u> 36 = 0,64 cm² = <u>-0,708497</u> -11,92915 or Volume = $\frac{4}{3}\pi r^3$ 4 4 $= \frac{4}{3} \times \frac{22}{7} \times 4^{3}$ x = -0,18 or -2,98= 268⁴/₂₁cm³ 8(a) 4cm to represent 10 units **(b)(i)** $y \ge 10$; x > 30 and $y \le -\frac{5}{8}x + 40$ (ii) Maximum value of y = 20(iii) value of x + y which make (x+y) a maximum *x* = 40 y = 20(vi) 40x + 20y= 40(40) + 20(20)= 1600 + 400= 2000

10(a)(i) reflex AÔC = 218°	(b)(i)Area of PQXS = $6 \times 6 \sin 41,37^{\circ}$
	= 23,909174cm ²
(ii) CBT = 109°	= 23,9cm²
(iii) BCT = 43°	(ii) $\sin 41^{\circ} 37' = \frac{h}{c}$
(iv) BÂO = 24° Exterior angle of a cyclic quad = opposite interior angle	h = 6sin41°37' = 3,984862261
	XR => Pythagoras theorem
•	$=\sqrt{6^2 - 3,984862261^2 + \sqrt{7},6^2 - 3,984862261^2}$
	= /20,12087276 + /41,88278266
	= 4,485629583 + 6,471690866
	= 10,95732045
	Area of QRX = ½base×height
	= ½×10,95732045×9,98486226
	= 23,83148908cm ²
	= 21,83cm ²
11 m = <u>1894,57</u> cents per unit 269	(b)(i) <u>363.76</u> × <u>100</u> 1894,57 1
= 7,0430 = 7.043c por unit	= 19,2%
-7,045 per unit	(ii) Increase = 1067,69 – 530,49
= 497	= 537,2
$q = 5000,00 - 2788,81 \\ = 2211,19$.'. <u>537,2</u> × <u>100</u> 530,49 1
<u>+ 9496,86</u> 11708,05	= 101,2648683%
<u>1067,69</u> 12775,74 <u>1253,00</u>	= 101,3%
14028,74	

	C		:	
**************************************		entre Number	Cano	lidate Nu
	And the second sec			
	For Parphromitics Measurement			2
ZIMBABWE SCHO General Certifi	DL EXAMIN cate of Education	NATIONS Ordinary Lev	COUN	CIL
MATHEMATICS PAPER 1		40	08/1, 402	8/1
NOVEMBER	2008 SESSION	2 h	ours 30 minu	tes
Candidates answer on the question pape Additional materials: Geometrical instruments	r		•	• • •
TIME 2 hours 30 minutes				
INSTRUCTIONS TO CANDIDAT Write your name, Centre number and	'ES l candidate number	in the spaces a	the top of th	is nage
Answer all questions.				- F-8-
Write your answers in the spaces pro If working is needed for any question Omission of essential working will re Decimal answers which are not exact	vided on the question it must be shown i esult in loss of mark should be given co	on paper. n the space bel s. rrect to three s	ow that quest gnificant fig	ion. ures
unless stated otherwise.			x .	
unless stated otherwise. Mathematical tables, slide rules an examination room.	d calculators shou	ld not be brou	ght into the	
unless stated otherwise. Mathematical tables, slide rules an examination room, INFORMATION FOR CANDIDA' The number of marks is given in brac of each question or part question	d calculators shou FES kets [] at the end	ld not be brou FOR EXA	ght into the MINER'S L	JSE
unless stated otherwise. Mathematical tables, slide rules an examination room. INFORMATION FOR CANDIDA' The number of marks is given in brac of each question or part question.	d calculators shou FES kets [] at the end	ld not be brou FOR EXA	ght into the MINER'S L	JSE
unless stated otherwise. Mathematical tables, slide rules an examination room, INFORMATION FOR CANDIDA' The number of marks is given in brac of each question or part question.	d calculators shou FES kets [] at the end	ld not be brou FOR EXA	ght into the MINER'S L	JSE
unless stated otherwise. Mathematical tables, slide rules an examination room, INFORMATION FOR CANDIDA The number of marks is given in brac of each question or part question. This question paper const	d calculators shou FES kets [] at the end	Id not be brou FOR EXA	ght into the MINER'S L nk pages.	JSE

NEITHER MATHEMATICAL TABLES NOR SLIDE RULES NOR CALCULATORS MAY BE USED IN THIS PAPER.

(a) Simplify

1

(i) $6,3 \times 1,1$, giving your answer as a decimal,

(ii) $\frac{2}{3} - \frac{3}{4}$, giving your answer as a common fraction.

(b) Find 5% of 130 metres.

Answer

(a)

(b)

ξ

(i)

(ii)

4008/1 N2008

2

F Exam T

[1]

[1]

[2]

m

et

(b)

Simplify $(0,2)^3 \times (0,2)^2$, giving your answer as a decimal.

33

[1]

[2]

Solve the equation

Answer

(a)

(b)

x =

4008/1 N2008

5x-2(x+3)=9.

.

5

(a)

(b)

Write 0019 in 12-hour notation.

Tapiwa and Notsai share some money in the stio 2: 5. Given that Tapiwa's share is \$620 000, calculate Netsai's share.

For Examiner's Use

Eı

E

(a) BÂC,

6

- (b) <u>D</u>ÂC,
- (c) ADE.

Answer	(a)	BÂC =	[1]
	(b)	DÂC=	[1]
	(c)	ADE =	[1]
 ·			

4008/1 N2008

Exarr U

Given that $m = 4 \times 10^6$ and $n = 2.4 \times 10^{-3}$ giving each answer in standard form, calculate

7

(a)

mn,

WXYZ is a cyclic quadrilateral. The diagonals XZ and YW intersect at P and YX is produced to S. $Y\hat{W}X = 70^{\circ}$, $X\hat{Y}P = 25^{\circ}$ and $Y\hat{P}Z = 43^{\circ}$.

Calculate

- (a) XŻY,
- (b) $Y\hat{X}Z$,
- (c) S**X**W.

4008/1 N2008

9 **(a)** of town A from town B. The interior angle of a regular polygon is 162° Find the number (b) of sides of the polygon.

Answer

(a)

(b)

The bearing of town B from town A is 141°. Find the bearing

9

4008/1 N2008

 $\langle \cdot \rangle$

[Turn over

4

[1]

[2]

Ex

In the diagram, the shaded sector AOB is $\frac{7}{15}$ of the circle centre O. Calculate AÔB.

(b) Calculate the radius of a circle whose area is 154 cm^2 .

(a)

(b)

4008/1 N2008

[1]

_cm [2]

[Take π to be $\frac{22}{7}$]

Answer

10

(a)

Taurai is x years old. Zvikomborero, her brother is 9 years older than her. Their father is 3 times as old as Taurai. Their mother is twice as old as Zvikomborero.

- (a) Write down and simplify, in terms of x, an expression for the total age of the four members of the family.
- (b) Given that the sum of the ages of the four members is 139 years, find the value of x.

Answer

(a)

(b)

4008/1 N2008

х

14

[1]

[2]

[Turn over

For Examiner's

Use

11

Ê

Y. Z

The scale of a map is 1: 1 000 00<u>0</u>.

Find

12

2. X

- (a) the length, in cm, of a line on the map, which represents a road 160 km long,
- (b) the actual area of a piece of land which is represented by 2,64 cm^2 on the map, giving your answer in km^2 .

20

(a)

(b)

Answer

cm [2]

_km² [2]

.

÷13 If $f(x) = x^2 - 7x + 5$, find

- (a) f(-1),
- (b) the values of x for which f(x) = -7.

Answer

42

4008/1 N2008

(a) :

(b)

x =

[Turn over

[1]

[2]

or_

E

A bag contains red, blue and green courters all of which are identical except for colour.

14

A counter is picked at random from the bag. Its colour is noted and then it is replaced. The probability that it is red is 0,2 and the probability that it is blue is 0,5.

(a) Calculate the probability that the counter picked is either blue or green.

(b) Two counters are picked at random one after the other, with replacement. Calculate the probability that one is red and the other is blue.

•	Answer	(a)		 [1]
		(b)		 [2]
		4008/1 N2	2008	[Turn over

- 15
- (a) Factorise $x^2 y^2$.
- (b) Given that x y = 4 and $x^2 y^2 = 20$, find the value of x and the value of y.

4008/1 N2008

[Turn over

F Exam U

The diagram shows an isosceles triangle ABC with AB = AC, BC = 24 cm and AD is perpendicular to BC.

2

Given that the area of the triangle is 108 cm^2 , find

- (a) AD,
- **(b)** AC.

AD =

AC =

(a)

(b)

Answer

_cm [2] __cm [2] Bx

4008/1j N2008

[Turn over

2.

Given that $lc z_5 2 = 0,431$ and $lo z_5 3 = 0.083$, find the value of

(a) $\log_5 1\frac{1}{2}$,

(b) $\log_5 \sqrt{3}$.

Answer

(a)

(b)

[2]

[2]

(a) It is given that
$$\overrightarrow{AB} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$
 and $\overrightarrow{BC} = \begin{pmatrix} -8 \\ 6 \end{pmatrix}$.

Find

- (i) \overrightarrow{AC} ,
- (ii) \overrightarrow{CX} , given that $2\overrightarrow{CX} = \overrightarrow{BC}$.
- (b) P is the point (-3; 2) and $\overrightarrow{PQ} = \begin{pmatrix} 3 \\ -5 \end{pmatrix}$.

Find the coordinates of point Q.

[Turn over

Era

The Venn diagram shows the universal set ξ , set X and set Y. The letters u, v, w and z represent the numbers of elements in each subset.

It is given that $n(\xi) = 150$; n(X) = 55 and n(Y) = 32.

Find

(a) the smallest possible value of z,

(b) the largest possible value of v,

(c) the value of w if u = 45.

20

к М

4008/1 N2008

During a sale, a shop reduced all its prices by 20%. Calculate the - original price of an article which was sold during the sale for \$440 000. 2.

On a particular day, a bank bought British pounds (£) at a rate of (b) 1 British pound (£) to 35 000 Zimbabwean dollars (\$) and sold British pounds (£) at a rate of \$40 000 per £.

Calculate

- the amount, in British pounds, bought for \$10 500 000, (i)
- **(ii)** the amount, in Zimbabwean dollars, received for selling £112.

\$____ (ii)

[Turn over

[1]

For

Examina Use

4008/1 N2008

(a)

のないないないない 53 7 F Exami 24 U 9 10 8 7 6 5 3 4 ł, 2, 1 0 Mark 2 0 2, 1 2 9 <u>-</u>,5 ر **7** 3 No of pupils who scored 1 0 ι, this mark The table shows the test results of a class of pupils. The test was marked out of 10. Find (a) the number of pupil, in the class, (i) the modal mark, (ii) the range of marks scored by the pupils. (iii) Calculate the percentage of pupils who scored less than 5 marks. (b) 調整 The South of the sector .1 ^j°* [1] (i) (a) 1nswel [1] (ii) [1] (iii) [2] % (b) 4008/1 N2008 1 5

ŝ.

- (a) the roots of the equation $x^2 2x 1 = 0$,
- (b) the minimum value of $x^2 2x 1$,

- (c) the equation of the line of symmetry,
- (d) the area enclosed by the curve, the x-axis, the y-axis and the line x = 2.

4008/1 N2008

In the diagram, line *m* passes through the points (-4; 0) and (0;4). The line 3y + 5x = 15 cuts the *x*-axis and the *y*-axis at A and B respectively.

- (i) Write down the coordinates of A and the coordinates of B.
- (ii) Find the equation of line m.
- (iii) Write down two inequalities, other than $y \ge 0$, which define the region R.

4008/1 N2008

56 2008/01

NOVEMBER 2008 SESSION 4008/1: EXPECTED ANSWERS

1(a) 6,3 <u>1,1</u>	(b) $\frac{2}{3} - \frac{3}{4}$ _4(2) - 3	(3)	(c) 5×130	
630 63	12		100	
6,93	= 8 - 9 12	•	= <u>65</u> 10	
	$= -1/_{12}$		= 6,5 meters	
2(a) 54 ₆		(b) 10011 ₂ =	$1 \times 2^{4} + 1 \times 2^{1} + 1 \times 2^{1}$	0
<u>4036</u>		=	= 19 3 19	
			3 6 r 1	A
			0 r 3	
		=	= 301 ₃	EI
3 (a) $94 \times 152 = 14288$ $95 \times 152 = 14288 + 1200$	152	(b)(ii) <u>1428</u> 10000	$\frac{8}{00} \div \frac{94}{10000}$	
(b) (i) $0,094 \times 1520$ = $94 \times 152 \times 10$ 1000		<u>1428</u> 10000	<u>8 × 10000</u> 00 94	
= <u>14288×10</u> 1000		= 15	,2	
= <u>142880</u> 1000				
= 142,88				
4 (a) (0,2)3×(0,2)2		(b) 5x - 2 (x+	3) == 9	
= (0,2)3+2		5 <i>X - 2X - 6</i> 3 <i>X -</i> 6 :) = 9 = 9	
= (0,2)5		3 <i>x</i> = 3 <i>x</i> =	9+6	
= 0,00032		3	3	
5(a) 0019 is 1219am		6(a) BÂC = <u>1</u>	80 - 50	
(b) <u>5</u> × 620000 2		= <u>130</u> 2	2 = 65°	
= \$1550000		(b) DÂC = 18 = 30	0 - (20+65+65)	
		(c) AĎE = 18 = 93	0 - (20+65) 5°	

·

12(2) Actual - 160×100 000 -	(1) b m
12(a) Actual = 160 × 100 000 cm	(b) Ratio of length
= 1000000 cm	1:1000000
1.00 the map = 1600000000000000000000000000000000000	Ratio of areas
1 000 000	$1^2: 1\ 000\ 000^2$
= 16	$1:10^{12}$
Actual area = $2,64 \times 10^{12}$ cm ²	
.'. In square km = 2.64×10^{12} km ²	
1010	
$= 2,64 \times 10^{12-10}$	
$= 2,64 \times 10^{2}$	
= 264 km ²	
$(100\ 000 \text{ cm} = 1\ \text{km})$	
$(100\ 000 \text{ cm})^2 = (1\text{ km})^2$	
$10^{10} \text{cm}^2 = 1 \text{km}^2$	
13(a) $f(x) = x^2 - 7x + 5$	$(\mathbf{h}) f(\mathbf{x}) = 2 - \mathbf{r}$
$= (-1)^2 - 7(-1) + 5$	$(b) (x) = x^2 - 7x + 5$
= (1) = 7(-1) + 5 = 1 + 7 + 5	$x^{-} - /x + 5 = -/$
-12	$x^{2} - 7x + 5 + 7 = 0$
- 13	$x^2 - 7x + 12 = 0$
	$x^{2} - 3x - 4x + 12 = 0$
	x(x-3) - 4(x-3) = 0
	(x-3)(x-4) = 0
	x = 3 or 4
14(a) $\frac{2}{10} + \frac{5}{10} = \frac{7}{10}$ or 0,7	15(a) $(x + y)(x - y)$
	(b) $x - y = 4$ $(x + y)(x - y) = 20$
(b) P(one is red and the other blue)	(x+y)(x-y) = 20
P(r & b) or P(b & r)	$(x - y) = \frac{1}{4}$
$= \frac{2}{10} \times \frac{5}{10} + \frac{5}{10} \times \frac{2}{10}$	
= <u>20</u>	x + y = 5
100	
$=\frac{1}{5}$	(1) x - y = 4 $(1) 4 5 - y = 4$
	(2) x + y = 5 $45 - 4 = y$
	$\frac{1}{2} = v$
	2x = 9
	$\frac{1}{2}$ $\frac{1}{2}$
	X
	= 4,5
16(a) $\frac{1}{2} \times 24 \times AD = 108$	(b) $\Delta C^2 = 0^2 + 10^2$
	$\Lambda C^2 = 9^{-1} + 144$
12AD = 108	AC = 01 + 144 $AC^2 = 225$
12 12	AC = 223
	-15
AD = 9	- 15
$(a) \frac{1}{2} \times (1+2) \times 25$	(b) $37,5m^2 \times 10m$
$= 3 \times 12,5$	$= 375 m^3$
= 3/,5m ²	

18(a) $\log^{3}/_{2} = \log^{3} - \log^{2}$	(b) log3 ^{1/2}
= 0,683 - 0,431 = 0.252	$= \frac{1}{2}\log 3$
- 0,252	$= \frac{72}{2} \times 0.683$ = 0.3415
19(a) AC = $\begin{bmatrix} 2 \\ 2 \end{bmatrix} + \begin{bmatrix} -8 \\ \end{bmatrix}$	(b) $\begin{pmatrix} 3 \\ - \end{pmatrix} = \begin{pmatrix} Q \\ x \end{pmatrix} - \begin{pmatrix} -3 \\ -3 \end{pmatrix}$
	$\begin{bmatrix} 1 \\ -5 \end{bmatrix} \begin{bmatrix} y \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix}$
$= \begin{bmatrix} -6 \end{bmatrix}$	$\left(3\right) + \left(-3\right) = \left(x\right)$
	$\lfloor -5 \rfloor \lfloor 2 \rfloor \lfloor y \rfloor$
(i) $CX = \frac{1}{2}BC$	$\begin{bmatrix} 0\\ 2 \end{bmatrix} = Q$
$=$ <u>1</u> $\left(-8\right)$	(-3)
2 (6)	Q(0;-3)
$= \begin{pmatrix} -4 \\ 2 \end{pmatrix}$	
20(a) 150 - (55+32)	(c) u v .'. w = 22
- 03	45 10
(b) 32	
21(a) 80% = 440 000 .'. original price = 100 × 440 000	(ii) 40 000
20	400000
= 550 000	80000
(b)(i) 10 500 000	_\$4 480 000
35 000	
= £300	
22(a) $\frac{1}{2} \times 20 \times 10 + \frac{1}{2} (20+10) \times 10$ 100m + 150m	(b) 20m/s
= 250m	(c) $20m/s = 2m/s^2$
	IUS
23(a) $x = h + ky$	(1) $1 = h + \frac{1}{2}(8)$
(b) (1) 1 = h + 8k	1 = h + 4
(2) $3 = h + 12k$	1 - 4 - b
-2 = -4k	
-4 -4	h = -3
$k = \frac{1}{2}$	

24(-)(1)(1+2+7+0+5+2+2+2+2)	
24(d)(1) 1+3+7+9+5+2+2+1+2	(b) $1+3+7+9 \times 100$
= 32	32 1
(ii) 2	$= 20 \times 100$
	$- 20 \times 100$
(iii) $9 - 1 = 8$	
	= 62 5%
25(a) x = -14 or 24	(d) 1 × 269 or 1 × 269
23(a) = -1, + 0, 2, +	101 ± 208 01 ± 208
(b) -2	25 50
	$= 10.72 \text{ cm}^2 - 5.26 \text{ cm}^2$
(c) $x = 1$	$= 10,72011 = 5,3000^{\circ}$
$26(a) 2x - 3 - \sqrt{9}$	(b)(i) 2(0) + Exc. 15
$20(0) 2x = 3 = \sqrt{3}$	(b)(1) S(0) + 5x = 15
2x - 3 = +3	5x = 15
22 3 - 15	X = 3
2x - 3 = 3 or $2x - 3 = -3$.'. A (3 ; 0)
2x = 6 or $2x = 0$	21(15(0) - 15
	3y + 5(0) = 15
x = 3 or $x = 0$	5y = 15
	y = 5

ZIMBABWE SCHOOL EXAMINATIONS COUNCIL

General Certificate of Education Ordinary Level

MA'I'HEMATICS PAPER 2

4008/2

NOVEMBER 2008 SESSION

2 hours 30 minutes

Additional materials: Answer paper Geometrical instruments Graph paper (3 sheets) Mathematical tables Plain paper (1 sheet)

TIME 2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces provided on the answer paper/answer booklet.

Answer all questions in Section A and any three questions from Section B.

Write your answers on the separate answer paper provided. If you use more than one sheet of paper, fasten the sheets together.

Electronic calculators must not be used.

All working must be clearly shown. It should be done on the same sheet as the rest of the answer.

Omission of essential working will result in loss of marks.

If the degree of accuracy is not specified in the question and if the answer is not exact, the answer should be given to three significant figures. Answers in degrees should be given to one decimal place.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part' question. Mathematical tables may be used to evaluate explicit numerical expressions.

This question paper consists of 11 printed pages and 1 blank page.

Copyright: Zimbabwe School Examinations Council, N2008.

©ZIMSEC N2008

[Turn over

		je 2			
• •		Section A	64_marks1		
		Answer all the quart			
1	2 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 12	ons in this section		
	(2) Express 3	$\frac{2}{5}$ - 2 $\frac{13}{20}$ as a single fraction	On in its lama		
	(b) - D	2.0	on mins lowest terms.	. [2]
	(b) Remove the	e brackets and simplify			
	3(a	+2c)-4(2a-c), (
	(c) Solve the set			[2	2]
×		luation			
	4x -	$\frac{-5}{-5} = 1\frac{3}{-5}$		•	
	7	4		[3	
•	(d) Find the num	nber of circular rings eac	bofdie		1
	$(11_{\text{cm}} 22)$	wire 19,8 m long.	101 ulameter 6,3 cm v	which can be	
	$0 \sec \pi = \frac{1}{7}$) .			
			•	[4]	
					•
2	(a) Factoria	•			
	i actorise com	pletely		•	:
	(i) $2x^2 + $	ax - 2bx - ab,		•	
• •	(ii) 3-12	, ²	-		
	,			۲۸٦	1
	Find	P(4; 8) and R(-4; -2) ar	e points on the C		· ·
			r antes on the Cartes	ian plane.	· ·
	(i) \overrightarrow{PR} as a	a column vector.			j .
			•		
				503	
	•	• • •	• • •	[3]	•
			•		
				•	
,	• •				· · · ·
••			ş		
		4008/2 N2008			-

3 (c) Two syclists. Alice and John, started a journey at the same time from two villages which are 27 km apart. Alice cycled at x km/h and John cycled at 2x km/h. They travelled towards each other and met after $\frac{3}{-}$ hour. (i) Write down, in terms of x, the distance that Alice travelled in $\frac{3}{4}$ hour. (ii) Form an equation in x and solve it. Hence write down the numerical value of John's speed. (iii) [4] Earth Sun Mars (a) In the diagram, the Sun, Earth and Mars are in a straight line. It is given that the Earth is $1,496 \times 10^8$ km from the Sun and Mars is $2,279 \times 10^8$ km from the Sun. 932,6388 Write down $1,496 \times 10^8$ in ordinary form. (i). Find, in standard form, the distance of Mars from the Earth. (ii) [3] (b) In a certain year, a paint manufacturer mixed 27 litres of white paint with 9 litres of red paint to produce 36 litres of pink paint. If one litre of the 208 white paint cost \$36 800 and the average cost of the pink paint was \$33 575 per litre, calculate the cost of one litre of the red paint then. [3] 215/1 Solve the simultaneous inequalities (c) (i) $2x - 6 < 5x + 3 \le 3x + 11$ giving your answer in the form $a < x \le b$ where a and b are integers. (ii) Write down the least possible value of x. [4]

3

4008/2 N2008

[Turn over

In the diagram, ABCD is a quadrilateral in which AD is parallel to BC and AC and BD intersect at X such that the ratio BX: XD = 3:2. Given that $\triangle ABX = 9 \text{ cm}^2$ in area,

- (i) calculate the area of $\triangle ADX$,
- (ii) name, in correct order, the triangle which is similar to ΔBCX ,

[5]

. [6]

(iii) hence calculate the area of $\triangle BCX$.

In the diagram, AP and AQ are tangents to the circles ABQ and ABPC respectively. Given that $A\hat{P}B = 30^{\circ}$ and $A\hat{Q}B = 50^{\circ}$,

calculate

- (i) BÂP,
- (ii) BÂQ,

(iii) reflex PBQ,

(iv) AĈP.

4008/2 N 1008

(a)

(b)

5 .

6

(a)

Express as a single fraction in its simplest form

$$n + \frac{2n}{6n+5}$$
 [2]

- (b) Make *m* the subject of the formula $a = \frac{m-5}{3m-2}.$
- (c) Given that $\mathbf{A} = \begin{pmatrix} 3 & 5 \\ -2 & 7 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 5 & y \\ y & 3 \end{pmatrix}$ find
 - (i) A^2 ,
 - (ii) the two possible values of y given that the determinant of the matrix B is 5y + 1. [5]
- Answer the whole of this question on a sheet of plane paper.

Use ruler and compasses only for all construction and show clearly all construction lines and arcs.

- (a) On a single diagram, construct
 - (i) a line OP, 9 cm long,
 - (ii) a circle centre O and radius 3,5 cm,

(iii) the locus of points which are equidistant from O and P,

- (iv) the circle whose diameter is OP to cut the circle centre O at R and Q,
- (v) the two tangents to the circle centre O from the point P.
- (b) OP represents a certain locus. Describe this locus fully. [2]
- (c) A point T lies inside the quadrilateral PQOR and is such that it is nearer PQ than PR and nearer O than P. Given also that $OT \ge 3,5$ cm, show by shading clearly the region in which T lies. [2]

4008/2 N2008

[Turn over

[7]

[3]

6 Section B [36 marks]

Answer any :: ree questions in this section.

Answer the whole of this question on a sheet of graph paper.

1

Mass (m kg)	$35 < m \le 45$	$45 < m \le 50$	$50 < m \le 55$	$55 < m \le 60$	60 < m ≤ 70
Frequency	p p	11	13	8	3
Frequency density	0,5	2,2	2,6	q	0,3

The table gives the masses, m kg, of a group of students at a teachers' college.

[2] Find the value of p and the value of q. (a) Using a horizontal scale of 2 cm to represent 5 kg and a vertical scale **(b)** of 4 cm to represent 1 unit of frequency density, draw a histogram of [4] the data. Calculate an estimate of the mean mass of the students in the group (c) [3] whose masses are greater than 45 kg. Two students are chosen at random from the whole group. Find the (d) probability that each of them has a mass which is greater than 50 kg. [3]

In the diagram, ABC is a crane lifting a load D. AB and BC are beams and ACD is a string. Given that the vertical beam AB = 5 m, AC = 8 m, CD = 3.6 m and BCA calculate

- (i) ABC,
- (ii) the height of D above the ground level.

The diagram shows a vertical cylindrical container with water up to a height of 9 cm. The volume of the water in the container is 512 cm³. A metal solid, of volume 217 cm³, is lowered into the container until the solid is completely immersed in water. Calculate the height by which the water level rises in the container. Give your answer correct to the nearest millimetre. [6]

4008/2 N2008

[Turn over

[6]

(a)

Take π to be = 3,142

In the diagram, PQR is a segment of a circle of radius 6 cm and centre O. PR = 6 cm, RS = 8 cm, PS = (3x + 4) cm and PRS = 120°.

(a) Calculate the area of the segment PQR.

(b) (i) Form a $3r^2 + 8$

9

- Form an equation in x and show that it reduces to $3x^2 + 8x 44 = 0$.
- (ii) Solve the equation $3x^2 + 8x 44 = 0$ giving your answers correct to 2 decimal places. [8]

[4]

Answer the whole of this question on a sheet of graph paper.

A stone is thrown into the air. Its height h metres after t seconds is given by the formula $h = 60 + 30t - 5t^2$.

Below is a table of values for $h = 60 + 30t - 5t^2$.

-10 1

Time (t seconds)	0	1	2	3.	4	5	6	7	8
Height h(metres)	60	85	100	pres	100	. 85	60	9.25	-20
a) Find the valu	te of p	and the	value of	f q.	•		,	[2]
(b) Using a hori scale of 2 cn h = 60 + 30t	zontal n to rep $-5t^2$	scale of present 2 for $0 \le t$	2 cm to 20 metre ≤ 8.	represe s, draw	nt 1 seco the grap	ond and oh of	l a vertica	al [[8]
(c) Use your gr	aph to	find	•	•	•	·• •	•	•	•1 •
(i) the r	naxim	um heig	ht reach	ed by th	e stone,			· ·	•
(ii) the	velocit	y of the	stone w	hen $t = 2$	2,		ų. 		
(iii) the	times v	when the	stone is	s at a he	ight of 8	30 m.	•		[6]

4008/2 N2008

The diagram shows a wooden block of length 150 cm, whose cross-section, ABCD is a trapezium in which AB is parallel to DC. AB = 65 cm, AD = BC = 32,5 cm and the perpendicular height is 30 cm.

(a) Calculate

11

(i) the length CD given that the area of the trapezium is 1575 cm^2 ,

- (ii) the volume of the block,
- (iii) the mass of the block given that the density of the wood of which it is made, is $0,72 \text{ g/cm}^3$,
- (iv) the total surface area of the block.

[10]

(b) The block is to be varnished. One litre of varnish covers an area of $2\ 000\ \text{cm}^2$ and is bought in 5-litre tins only. Calculate the number of tins of varnish that need to be bought to varnish the whole block.

[2]

12 Answer the whole of this question on a sheet of graph paper.

A quadrilateral E with vertices (-8; -4), (-4; -4), (-6; -12) and (-10; -8) is the image of quadrilateral A with vertices (4; 2), (2; 2), (3; 6) and (5; 4).

Using a scale of 1 cm to represent 1 unit on both axes, draw the x and y axes for $-10 \le x \le 6$ and $-12 \le y \le 8$.

(a) (i) Draw and label clearly the quadrilateral E.

(b)

- (ii) Draw and label clearly the quadrilateral A.
- (iii) Write down the matrix which represents the transformation which maps E onto A.

[5]

[4]

[3]

Quadrilateral T with vertices (0; 6), (0; 4), (-4; 5) and (-2; 7) is the image of quadrilateral A under a certain transformation.

- (i) Draw and label clearly the quadrilateral T.
- (ii) Describe completely, the single transformation which maps A onto T.

(c) A one-way stretch represented by $\begin{pmatrix} 1 & 0 \\ 0 & -1\frac{1}{2} \end{pmatrix}$ maps quadrilateral A onto quadrilateral S.

Draw and label clearly the quadrilateral S.

4008/2 N2008

NOVEMBER 2008 PAPER 2

1(a) $17 - 53$	2(a) $2x^2 + ax - 2bx - ab$ (b) $3 - 12y^2$
5 20	$2x^{2} - 2bx + ax - ab \qquad 3(1 - 4y^{2})$ 2x(x - b) + a(a - b) = -3(1 - y)(1 + y)
= 4(17) - 53	(2x + a) (x - b)
20	(b) $PR = (-4) (4)$
= 68 - 53	
20	= (-16)
$= \frac{15}{20}$	[-10]
20.	
$= \frac{3}{4}$	$ \mathbf{DP} = \sqrt{(16)^2 + ((10)^2)}$
(b) $3(a + 2c) - 4(2a - c)$	$ \mathbf{FR} = \sqrt{(-10)^2 + (-10)^2}$
= 3a + 6c - 8a + 4c = 10c - 5a	$= \sqrt{256 + 100}$
	= √356
(c) $\frac{4x-5}{7} = \frac{7}{4}$	= 18 86796
A(A) = 5) = 40	10,007,00
4(4x-5) = 49 16x-20 = 49	= 18,9
16x = 49 + 20	(c)(i) Distance: Alice = speed × time
10 - 10 - 05 - 16	$= x \times \frac{3}{4} \text{ km}$ $= \frac{3}{4}x \text{ km}$
$x = 4^{5}/16$	Distance: John - 20 x 3/ Jun
	$= \frac{3}{2x} \text{ km}$
(d) Circumference = $2\pi r$ = 2 × 22 × 3.15 (radius)	(ii) $\frac{3}{4}x + \frac{3}{5}x = 27$
$\frac{1}{1}$ $\frac{7}{7}$	3x + 6x = 27
= 19,8cm	9x = 27
' number of rings that can be made	9 9
= 19.8 m	<i>x</i> = 3
19,8cm	
= <u>1980 × 10</u>	(11) 2(3) km/h = 6 km/h
19,8 × 10	
= <u>19800</u>	
198	ş.
= 100	

3(a)(i) $1,496 \times 10^8 = 1496000000$	(c)(i) $2x-6 < 5x+3$ $5x+3 \le 3x+11$ $2x-5x < 3+6$ $5x + 3 \le 3x+11$
(ii) $2279 \times 108 - 1496 \times 108$	$2x^{-3}x < 3+0$ $3x-3x \le 11-3$
108(2,279 - 1,496)	
100(2,27) = 1,490) 109(0,792)	-3x < 9 $2x < 8$
100(0,783)	-3 -3 2 2
$= 0,783 \times 108$	
= 7,83×107	$x > -3 \qquad \qquad x \le 4$
(b) Total cost for the white paint	2
$-\frac{427}{36800}$	$-3 < x \le 4$
- \$002.600	
- \$993 000	(11) -2
Dod wy(total cost)	
$Red = \chi(lotal Cost)$	
993600 + x = 33575	
36	
993 600 + $x = 1$ 208 700	
x = 1208700 - 993600	
= \$215 100	
.'. cost of red paint per litre	
= \$215 100	
0	
$- d^{22} 000 \text{ nor litro}$	
= \$25 900 per litre	
4(a)(i) 3 : 2	(b)(i) BAP = 50° angle between a
.'. Area of $\triangle ADX = 9 \times 2$	tangent and a triangle bk 4
3	
	(ii) $BAO = 30^{\circ}$ angle between a
$= 6 \text{cm}^2$	tangent and a trianglo
	cangene and a changle
(ii) $BCX = DAX$	(iii) reflex PBO - $100^{\circ} \pm 100^{\circ} = 200^{\circ}$
	100 + 100 = 200
(iii) BX : DX	(iv) $ACP = 80^\circ$ opposite of a cyclic
3 2	quad
' ratio of areas = $3^2 \cdot 2^2$	
$- 0 \cdot 1$	
- 7.4	
\therefore Area of BCX = $\overline{p} \times 9$	
4	
= <u>27</u>	
2	
= 13,5cm ²	

5(a) n + <u>2n</u> 6n + 5	(b) a = <u>m-5</u> 3m - 2
<u>n(6n+5) + 2n</u> 6n + 5	a(3m – 2) = m – 5
<u>6n² + 5n + 2n</u> 6n + 5	3am – 2a = m – 5
<u>6n²+ 7n</u>	3am - m = -5 + 2a
6n + 5	$\frac{m(3a-1)}{3a-1} = \frac{-5+2a}{3a-1}$
	m = -5 + 2a 3a - 1

$8(a)(i) \underline{sin36} = \underline{sinABC}$	(b) $9cm = 512cm^2$
S 8	$I cm = less = 512 cm^3$
<u>$8sin36$</u> = sinABC	9 volume that
5	represents 1cm ³
0,94056 = sinABC	
70 1 4501 4720 450	.'. height = 217×9 [height= $217 \div 9$]
70,145814738 = ABC	512 512
.'. ABC = 70,1°	= 3,814cm
$9(a)$ Area AOPP = $1/x 6 \times 6 \sin 120 \ \mathrm{cm}^2$	
3(d) Alea AOFR - 72X 0 X 0511120 Cm ²	$(3x+4)(3x+4) = 6^2+8^2 - 2x6x8cos120$
= 18sin120 cm ²	
= 10.45100132 cm ²	$9x^2 + 12x + 12x + 16 = 148$
10, 19100192 Cm	$9x^2 + 24x + 16 - 148 = 0$
$= 10,45 \text{ cm}^2$	
Area of the sector OPOR = $\Theta \times \pi r^2$	$9x^2 + 24 - 132 = 0$
360	$3(3x^2 + 8x - 44) = 0$
$-60 \times 2142 \times 62$	3 3
<u> </u>	$3x^2 + 8x - 44 = 0$
= 18,852 cm ²	$x = -b \pm \sqrt{b^2 - 4ac}$
.'. Area of the segment PQR	
= 18,852 - 10,45	$= -8 \pm \sqrt{8^2 - 4 \times 3 \times -44}$
- 8,402 CIII-	σ
	$=$ <u>-8 ± $\sqrt{592}$</u>
	6 = 8 + 24 221 or 0 24 221
	$\begin{array}{c} - \underline{-} \underline{-} \underline{-} \underline{-} \underline{-} \underline{-} \underline{-} \underline$
	x = 2,/2 or x = -5,39

*

11(a)(i) Area of trapezium = $\frac{1}{2}(AB + DC) \times 30^{\circ}$

$$\frac{4}{2} \times (65 + DC) \times 30 = 1575 \text{ cm}^{2}$$

$$(65 + DC) \times 15 = 1575$$

$$975 + 15DC = 1575$$

$$15DC = 1575 - 975$$

$$\frac{15DC}{15} = \frac{600}{15}$$

$$DC = 40$$
(ii) Volume of the block = 1575 \times 150
$$= 236250 \text{ cm}^{3}$$

(iii) Density = <u>mass</u> volume

mass = density × volume

= 0,72g/cm³ × 23650cm³

.'. mass = 17028g

(iv) Total surface area = $1575 \times 2 + 150 \times 32,5 \times 2 + 65 \times 150 \times 2$

= 32400cm²

= 3150 + 9750 + 19500 cm²

(b)

<u>32400</u> 2000

= 16,2 litres of varnish required

.'. Number of tins = 4

NOV 2008		تى ب
Candidate Name	Centre Number	Candidate's
Subject		
Question No. (L	· .
10 (9) P= 105 1 9= 25		
C(1) maximum height = 104		
(II) Numer + is 2 = 100		
	- A	
1. The time when the he	vant is er	
	See	
730		
5 80		
60 5		
		-
the second s		
EG 3		· · · · · · · · · · · · · · · · · · ·

r

For Performance	A Mensarronicet
ZIMBABWE SCHOOL EX General Certificate of Ed	AMINATIONS COUNCIL aucation Ordinary Level
MATHEMATICS PAPER 1	4008/1, 4028/1
JUNE 2011 SES	SION 2 hours 30 minutes
Candidates answer on the question paper. Additional materials: Geometrical instruments	
FIME 2 hours 20 minutos	
Write your name. Centre number and candidate	e number in the spaces at the top of this page
Write your name, Centre number and candidate Answer all questions. Write your answers in the spaces provided on the If working is needed for any question it must be Omission of essential working will result in lo Decimal answers which are not exact should be unless stated otherwise.	e number in the spaces at the top of this page. the question paper. be shown in the space below that question. ss of marks. e given correct to three significant figures
Write your name, Centre number and candidate Answer all questions. Write your answers in the spaces provided on the If working is needed for any question it must be Omission of essential working will result in low Decimal answers which are not exact should be unless stated otherwise. Mathematical tables, slide rules and calcula examination room.	e number in the spaces at the top of this page. the question paper. be shown in the space below that question. ss of marks. e given correct to three significant figures tors should not be brought into the
Write your name, Centre number and candidate Answer all questions. Write your answers in the spaces provided on the If working is needed for any question it must be Omission of essential working will result in low Decimal answers which are not exact should be unless stated otherwise. Mathematical tables, slide rules and calcula examination room. INFORMATION FOR CANDIDATES The number of marks is given in brackets [] a	the question paper. be shown in the space below that question. ss of marks. e given correct to three significant figures should not be brought into the FOR EXAMINER'S USE t the end
 Write your name, Centre number and candidate Answer all questions. Write your answers in the spaces provided on a figure of the space provided on a second se	e number in the spaces at the top of this page. the question paper. be shown in the space below that question. ss of marks. e given correct to three significant figures ators should not be brought into the FOR EXAMINER'S USE
 Write your name, Centre number and candidate Answer all questions. Write your answers in the spaces provided on a figure of the space of the space	e number in the spaces at the top of this page. the question paper. be shown in the space below that question. ss of marks. e given correct to three significant figures ators should not be brought into the FOR EXAMINER'S USE
Write your name, Centre number and candidate Answer all questions. Write your answers in the spaces provided on a If working is needed for any question it must be Omission of essential working will result in low Decimal answers which are not exact should be unless stated otherwise. Mathematical tables, slide rules and calcula examination room. INFORMATION FOR CANDIDATES The number of marks is given in brackets [] a of each question or part question. This question paper consists of 23	the question paper. be shown in the space below that question. ss of marks. e given correct to three significant figures ators should not be brought into the FOR EXAMINER'S USE t the end

5 For Examiner's Make *u* the subject of the formula $T = \frac{mu^2}{K} - 5mg$. 6 Use [3] Answer: *u* = Express $5^2 + 3 \times 5 + 4$ as a number in 7 base 5, (a) (b) base 8. [1] (a) Answer: [2] (b) 4008/4028/1 J2011 [Turn over
8 State the order of rotational symmetry of a parallelogram. (a) (b) The triangle XYZ has XY = 5 cm and YZ = 6 cm. Given that the triangle XYZ has only one line of symmetry, write down the two possible lengths of XZ. Answer: (a) [1] (b) cm [2] cm or A rectangle measures 10,2 cm by 7,1 cm, correct to one decimal place. 9 Find the minimum possible perimeter of the rectangle.

6

4008/4028/1 J2011

Answer:

[3]

cm

. . I

Exam τ

[Turn over

In the diagram, ABCD and PBCQ are intersecting circles. DCQ and ABP are straight lines.

(a) Given that $\hat{ADC} = 95^\circ$, calculate

(i) ABC,

(ii) PQC.

(b)

Given also that $DAB = x^\circ$, find an expression for BPQ in terms of x.

12

In the Venn diagram, R, S, T and ξ are sets with their elements as shown. Use the Venn diagram to find

- (a) $R' \cap S$,
- (b) $(R \cap S) \cup (R \cap T)$,
- (c) $n(R \cup S \cup T)'$.

For

Examine Use

14 Express $\log_{10} x + 2\log_{10} y = 1$ as an equation in index form. Answer: [3] It is given that $\mathbf{p} = \begin{pmatrix} 6 \\ -8 \end{pmatrix}$, $\mathbf{q} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$ and $\mathbf{r} = \begin{pmatrix} m \\ n \end{pmatrix}$. 15 (a) Express $\mathbf{p} - 3\mathbf{q}$ as a column vector. **(b)** Given that $\mathbf{p} + \mathbf{q} = 3\mathbf{r}$, find the value of *m* and the value of *n*. Answer: (a) [1] *(b)* m =[2] n =4008/4028/1 J2011

9. . 1

(a) Convert

- (i) the fraction $\frac{3}{8}$ to a percentage,
- (ii) 9% to a decimal fraction.

(b) Simplify the expression $\sqrt{3} + \sqrt{12}$.

4008/4028/1 J2011

[Turn over

For Examiner's Use

÷

In the diagram, O, A, B and C are four points on the velocity-time graph of an object.

- (a) Describe the motion of the object as illustrated on the section of the graph.
 - (i) O to A,
 - (ii) A to B.

(b) Calculate the distance covered by the object during the 20 seconds.

4008/4028/1 J2011

The following entries show the number of bicycles sold per day in nine days.

6; 10; 12; 9; 14; 10; 15; 10; 12

Find

(a) the mode,

(b) the median,

(c) the next entry if the new mean on the tenth day is 12.

Answer: (a) [1] (b) [1] (c) [2]

4008/4028/1 J2011

[Turn over

For Examin Use

In the diagram, $D\hat{A}B = A\hat{B}C$, AD = BC and AC and BD intersect at P.

For

Use

Examine

(i) Name the triangle that is congruent to triangle ABC.

(ii) State the case for congruency in (a)(i).

(b) The sides of a triangle X are 9 cm, 7 cm and 6 cm. The shortest side of a triangle Y, which is similar to triangle X, is 3 cm.

Write down the ratio, area of X : area of Y.

20 (a)

In the diagram, PQ and MN are two straight lines which intersect at T.

- (a) Find the equation of the line
 - (i) PQ,

21

(ii) MN.

(b) Calculate the coordinates of the point T.

4008/4028/1 J2011

16

For Examine Use -

22

The following is an extract from Mrs Green's telephone Bill for the period 01/03/06 to 31/03/06.

For Examiner Use

1	\$
Rental	2 000
177 units at X cents/unit	7 965
Sub-Total	9 965
VAT at 15%	Ŷ
Amount due	Z
· · · · · · · · · · · · · · · · · · ·	•

Calculate

(a) Х,

Υ,

(c) Ζ.

(b)

Answer:	(a)	X=	[2]
	<i>(b)</i>	Y =	[2]
· •	(c)	<i>Z</i> =	[1]

4008/4028/1 J2011

[Turn over

For

Examiner's Use

In the diagram, AB and CB are intersecting straight lines.

Use ruler and compasses only to construct on the diagram

- (a) (i) the perpendicular bisector of BC,
 - (ii) a line on the same side of AB as C and is also 2,0 cm from AB.
- (b) Mark the point X which is 2,0 cm from AB and equidistant from B and C.

[2] on the diagram (i) (a) Answer: [2] on the diagram (ii) on the diagram [1] (b)

4008/4028/1 J2011

23

4008/4028/1 J2011

[Turn over

25 When a biased coin is tossed, the probability of getting a head is 0,6. For this coin, find

- (a) the probability of getting a tail if it is tossed once,
- (b) the probability of getting at least one head if it is tossed twice,
- (c) the expected number of heads if it is tossed 50 times.

 Answer:
 (a)
 [1]

 (b)
 [2]

 (c)
 [2]

4008/4028/1 J2011

Fc

In the diagram, the curve $y = x^2$ and the line y = 8 - 2x intersect at A and at B.

- (a) Write down
 - (i) the gradient of the line y = 8 2x,
 - (ii) the equation of the line passing through the origin and parallel to the line y = 8 2x.

4008/4028/1 J2011

[Turn over

(b) Write down the x- coordinate of

(i) A,

(ii) B.

(c) Write down an equation in x whose roots are your answers in (b).

4008/4028/1 J2011

For Examiner's Use

J

Ľæ

Examiner's Use

In this question take π to be 3,14.

A spherical ball is 20 centimetres in diameter. Calculate

Answer:

(a) the surface area of the ball,

(b) the volume of the ball, correct to the nearest whole number.

 $\begin{bmatrix} \text{Surface area} = 4\pi r^2 \\ \text{Volume} = \frac{4}{3}\pi r^3 \end{bmatrix}$

[2]

[3]

4008/4028/1 J2011

1

JUNE 2011

.

$5 (a) x - 3 \le 3x + 10$	$6 T = \underline{mu^2} - 5mg$
$-3 - 10 \leq 3x - x$	K
$\frac{-13}{2} \leq \frac{2x}{2}$	$T + 5mg = \underline{mu^2}_k$
$-6^1/_2 \leq x$	$\frac{kT + 5kmg}{m} = \frac{mu^2}{m}$
(b) $x = -6$	$\sqrt{\frac{kT + 5kmg}{m}} = u$
•	$\sqrt{\frac{kT}{m} + 5kg} = u$
7 (a) $5^2 + 3 \times 5 + 4 = 1 \times 5^2 + 3 \times 5^1 + 4 \times 5^0$	7 (b) <u>8 44</u>
= 1345	8 5 r 4 0 r 5
$(25 + 15 + 4)_{10} = 44_{10}$	
_5 44	= 54 ₈
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 (a) 2 (b) 5cm and 6cm
0 r 1	9 $(10,15+7,05)2$ cm
= 1345	= 34,4cm
10 (a) direct variation	11 (a) $3m^{-5} \times 2m^{5}$
(b) $l = kd$	$= 6m^{-5+5}$ = $6m^{0}$
5 = 60k	= 6
60 60	(b) $\left[\underline{4} \right]^{-1/2}$
$\underline{1} = \mathbf{k}$	
12 .'. equation is $I = \frac{1}{12}$	$2\sqrt{\frac{9}{4}}$
· · · · · · · · · · · · · · · · · · ·	V 4
	$=\frac{3}{2}$

· ...

12 (i) $ABC = 85^{\circ}$ opp angles of a cyclic quad.	13 (a) $R' n S = \{6\}$
(ii) $PQC = 85^{\circ}$ opp exterior angle of a cyclic quad is = opp interior angle	(b) (R n S) U (R n T) = $\{4, 7, 8\}$
(b) BPQ = BCD = $180 - x$	(c) $n(R \cup S \cup T)' = 2$
angle of a cyclic quad is = opp interior angle.	
$14 \ \log_{10} x + 2\log_{10} y = 1$	15 (a) $p - 3q = \begin{bmatrix} 6 \\ -8 \end{bmatrix} - \begin{bmatrix} 3 \\ 3 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix}$
$\log_{10} x + y^2 = \log_{10} 10$	
$\log_{10} xy^2 = \log_{10} 10$	$= \begin{bmatrix} 6 \\ -8 \end{bmatrix} - \begin{bmatrix} 9 \\ 15 \end{bmatrix}$
$xy^2 = 10$	$=\begin{bmatrix} -3\\23\end{bmatrix}$
	(b) $p + q = 3r$
	$ \begin{bmatrix} 6\\-8 \end{bmatrix} + \begin{bmatrix} 3\\5 \end{bmatrix} = 3 \begin{bmatrix} m\\n \end{bmatrix} $
	$\begin{bmatrix} 9\\-3 \end{bmatrix} = \begin{bmatrix} 3m\\3n \end{bmatrix}$
	m = 3 $n = -1$
16 (a) (i) ${}^{3}\!/_{8} \times 100$	16 (b) $\sqrt{3} + \sqrt{(4 \times 3)}$
= 37.3% (ii) <u>9</u> 100	$\sqrt{3} + 2\sqrt{3}$
= 0.09	3√3
17 (a) O to A => The object is moving at a constant acceleration	18 (a) Mode = 10 (b) 6 9 10 10 10 12 14 15
(b) A to B \rightarrow The object is moving at a	.'. Median = 10
constant velocity	(c) $\underline{-6+9+10+10+10+12+14+15+n} = 12$ 10
(c) Distance = Area under the graph $1/(2 + 20)$	<u>$-98 + n_{-} = 12$</u>
$= \frac{1}{2}(8+20) \times 40$ = $\frac{1}{2} \times 28 \times 40$	10 98 + n = 120
1.4 . 10	
	12 (i) ABC = 85° opp angles of a cyclic quad. (ii) PQC = 85° opp exterior angle of a cyclic quad is = opp interior angle. (b) BPQ = BCD = 180 - x \therefore BPQ = 180 - x opp exterior angle of a cyclic quad is = opp interior angle. 14 $\log_{10}x + 2\log_{10}y = 1$ $\log_{10}x + y^2 = \log_{10}10$ $\log_{10}xy^2 = \log_{10}10$ $xy^2 = 10$ 16 (a) (i) $\frac{3}{8} \times 100$ = 37.5% (ii) <u>9</u> 100 = 0.09 17 (a) O to A => The object is moving at a constant acceleration (b) A to B => The object is moving at a constant velocity (c) Distance = Area under the graph $= \frac{12}{2}(8+20) \times 40$ $= \frac{12}{2} \times 28 \times 40$

÷

19 (a) (3x + 2y)(2x - y)**20 (a)** ABC = BAD $6x^2 - 3xy + 4xy - 2y^2$ (b) Side angle side $6x^2 + xy - 2y^2$ (c) Shortest side in triangle x = 6 cm (b) $20x^2 - 5y^2$ ratio of side = 3:61:2 $5(4x^2 - y^2)$ $x : y = 2^2 : 1^2$ 5(2x + y)(2x - y)= 4:121 (a) PQ =y = x**21 (b)** x = -2x + 4equation of line $\Rightarrow y = mx + c$ $\underline{3x} = \underline{4}$ 3 3 y = 1x + 0y = xMN = -2x + 4gradient of MN = 4 $x = \frac{4}{3}$ -2 = -2 .'. $T = (\frac{4}{3}; \frac{4}{3})$ 22 (a) <u>7965</u> (**b**) Y = <u>15</u> × 7965 (c) Z =9965 177 100 +1194.7511159,75 = 45= 11943/4 24 (a) _2 $(b) + (3) = 3^2 + 3$ = 1 x + 23 = 9 + 3= 12 6 = x + 26 - 2 = x(c) $x^2 + x = 0$ 4 = xx(x + 1) = 0x = 0 or -1**25** (a) 0,4 or $\frac{4}{10} = \frac{1}{5}$ $(c) <u>6 \times 50$ </u> 10 (**b**) P(h, t) or P(t, h) $6/_{10} \times 4/_{10} + 4/_{10} \times 6/_{10}$ = 30 $^{24}/_{100}$ + $^{24}/_{100}$ $= \frac{48}{100}$ = <u>12</u> 25

28

26 (a) Gradient = <u>increase in y</u> increase in x	(b) (i) $Ax = -4$ Bx = 2
(i) $= \frac{5}{-2,5}$	(c) $x^2 = 8 - 2x$ $x^2 + 2x - 8 = 0$
= <u>50</u> -25	
= -2	
(ii) $y = -2x$	
27 (a) $A = 4J7T^2$	(b) $V = \frac{4}{3}JTr^{3}$
$= 4 \times 22 \times 100 (10^2)$ 7	$= \frac{4}{3} \times \frac{22}{7} \times 10 \times 10 \times 10$
$= 1257^{1}/_{1} \text{ cm}^{2}$	$= \frac{4}{3} \times \frac{22}{7} \times 1000$
	$=4190^{10}/_{25}$
	$= 4190 \text{cm}^3$

11			n	111			
	-00124;				••• •••		•
	ZIMBAB	WE SC General	HOOL E Certificate of	XAMINA Education Orc	TIONS	COUNCI	L
	MATHEI PAPER 2	MATIC	S		•	4028/2	2
		Ν	OVEMBER 2	010 SESSION	2 h	Ouro 20 minute	
	Additional materia Answer paper Geometrical inst Graph paper (3 s Mathematical tal Plain paper (1 sh	ls: ruments heets) bles eet)				ours 50 minutes	
TIME	2 hours 30 m	inutes					
Answe Write y	r all questions i	n Section A the separate	and any three	questions from	Section B .	ed on the	
11 you	use more than o	ne sheet of p	paper, fasten th	e sheets togethe	er.		
All wor answer. Omissic If the de answer to one d	king must be cl on of essential v gree of accurac should be given ecimal place.	early shown vorking will y is not spec to three sign	. It should be result in loss o cified in the qu nificant figures	done on the san f marks. estion and if the Answers in d	ne sheet as th e answer is n egrees shoul	ne rest of the ot exact, the d be given	
INFOR The num question expression	MATION FOF ther of marks is Mathematic ons.	CANDID A given in bra al tables o	ATES ackets [] at the r calculator r	end of each qu nay be used	estion or par to evaluate	t explicit numer	ica
		This question	n paper consis	sts of 12 prints	d pages		
	1				U DAGEC		

- ... · ·

Section A [64 marks]

118

Answer all questions in this section.

[3]

[3]

[4]

[4]

[4]

[4]

(a) Find the value of
$$\frac{1}{3} + 1\frac{7}{9} + 2\frac{2}{3}$$
.

1

2

(b) During a sale, the price of a camera was reduced from \$160 to \$148,80.

Calculate the percentage decrease in price.

- (c) Given that $f(x) = x^2 4x + 3$, find all the values of x for which f(x) = 0.
- (a) Express $\frac{1}{x-1} + \frac{2}{x+1}$ as a single fraction in its simplest form.

Hence or otherwise, solve the equation

$$\frac{1}{x-1} + \frac{2}{x+1} = \frac{3}{x}.$$

(b) Solve the inequality

 $y - 4 < 3y + 2 \le 6 - y$.

Hence list the integral values of y that satisfy the inequality.

(c) In an Olympiad test, there were 26 questions. Eight points were given for each correct answer and five points were deducted for each wrong answer.

Tamara answered all questions and scored zero. Find the number of questions she had got correct.

ŧ

		119	
(a) (3 50	It is g (i)	given that $s = ut - \frac{1}{2}gt^2$. Find the value of s if $g = 9,8$; $u = 20$ and $t = 2$.	
<i>(</i> 1)	(ii)	Make g the subject of the formula.	[5]
(b)	A	2 B 8 4 C 1 E 2 B D	
	In the that A AC =	e diagram, ADE is a triangle, B is a point on AD such $AB = 2$ cm and $BD = 8$ cm. C is a point on AE such that 4 cm and CE = 1 cm, DE = 8 cm.	
	(i)	Name the triangle that is similar to Δ ABC.	
	(ii)	Calculate the length of BC.	[4]
(a)	It is g	iven that P varies directly as T and inversely as V.	<u></u>
	(i)	Write down an equation connecting P, V, T and a constant k.	
	(ii)	Given that $P = 2 \times 10^5$ when $V = 1 \times 10^{-3}$ and $T = 300$, calculate the value of k.	12
· ···-;-	(iii)	Calculate P if V = $0,0025$ and T = 300 .	[5]
(b)	Given find	that $\mathbf{M} = \begin{pmatrix} 3 & -2 \\ -1 & 4 \end{pmatrix}$, $\mathbf{N} = \begin{pmatrix} 5 \\ 7 \end{pmatrix}$ and $\mathbf{R} = \begin{pmatrix} 3 & -1 \end{pmatrix}$, (i) MN	
		(ii) M ⁻¹	
		(iii) RN.	[6]

In the diagram, A, B, C, D and E are points on the circumference of a circle centre O. BT is a tangent to the circle and TCD and AEF are straight lines. $C\hat{A}E = 68^\circ$, $C\hat{A}B = 36^\circ$ and BD is parallel to AE.

Find the size of

- (i) CBO,
- (ii) B**Î**C,
- (iii) DÊF,
- (iv) AĈB.
- (b) In a recipe for an apple pie, 500 g of apples and 200 g of flour are needed in making an apple pie for 4 people.
 - (i) If an apple pie was to be made for 6 people, calculate the quantity of apples needed.
 - (ii) If the apple pie was to be made for 3 people, calculate the quantity of flour needed.

[4]

[6]

Answer the whole of this question on a sheet of plain paper.

121

Use ruler and compasses only and show all construction lines and arcs.

All constructions must be done on a single diagram.

- 6 A farmer has a plot in the shape of a quadrilateral ABCD, in which AB = 110 m, BC = 100 m, CD = 60 m, AD = 70 m and $ABC = 60^{\circ}$.
 - (a) Using a scale of 1cm:10 m, construct the quadrilateral ABCD.
 - (b) Draw the locus of points
 - (i) 30 m from AB,
 - (ii) equidistant from A and B,
 - (iii) inside the quadrilateral which are 60 m from B.
 - (c) The farmer wishes to dig a well inside the plot such that it is at least 30 m from AB, at least 60 m from B and nearer to A than to B.

Shade the region in which the well must be.

4028/2 N2010

[5]

[5]

[2]

SECTION B [36 marks]

Answer three questions in this section

The diagram shows a wine glass in the shape of a cone mounted on a stand. The depth of the cone is equal to its diameter at the top.

- (i) Write down an expression for the volume of the cone in terms of its radius r and π .
- (ii) If the wine glass can hold 20 ml of wine when full, calculate the radius of the wine glass at the top.
- (iii) Wine is bought in bottles of volume 750 ml. Calculate the number of wine glasses that can be filled from one bottle.

[Volume of cone = $\frac{1}{3}$ base area x height. $\pi = \frac{22}{7}$]

(b)

7

(a)

The base of a triangle is x cm and its height is (x - 7) cm.

- (i) Write down an expression for the area of the triangle.
- (ii) If the area of the triangle is 6 cm^2 , form an equation in x and show that it reduces to $x^2 7x 12 = 0$.
- (c) Solve the equation $x^2 7x 12 = 0$, giving your answers correct to 2 decimal places.

4028/2 N2010

[4]

8

[3]

[5]

Answer the whole of this question on a sheet of graph paper.

123

7

The following is a table of values for the graph of the function

 $y = 7 - 5x - x^2$

8

·····										•
<u>x</u>	-7	6	-5	-4	-3	-2	-1	0	1	2
У	-7	1	7	- 11	13	13	11	7	1	_7
								L	1	

(a) Using a scale of 2 cm to represent 1 unit on the horizontal axis and 2 cm to represent 5 units on the vertical axis, draw the graph of the function $y = 7 - 5x - x^2$ for $-7 \le x \le 2$.

(b) Use your graph to answer the following questions.

(i) State the maximum value of the function $y = 7 - 5x - x^2$.

(ii) Solve the equation $7-5x-x^2=0$.

(iii) Solve the equation $-5x - x^2 = 2$.

2

(iv) Find the gradient of the curve at the point where x = 0.

[8]

[4]

(a) The diagram shows the distance-time graph of a cyclist, Farai and a pedestrian, Tanya, who travelled from their home to the train station which was 5 km away. After sometime Farai came back home.

9

124

Use the diagram to answer the following questions.

(i) Find Farai's speed on the outward journey.

[2]

State 1. the time when, Tanya arrived at the station, (ii) 2. the time when Farai overtook Tanya on the way to the station, 3. the distance that Tanya had covered when she was overtaken, 4. the total time that Farai was resting, 5. the distance that Tanya had left to cover when Farai met her the second time. [5] Calculate Tanya's average speed for the whole journey. (iii) [2] Two cards were picked at random from a pack of 52 playing cards with (b) replacement. Find the probability that one was a Court card (i.e. J, K or Q) and the other was an Ace (A). [3]

ç

In the diagram, A, B and C are three points on level ground. B is 12 km from A on a bearing of 062° and C is 15 km from A on a bearing of 158°.

Calculate (i) the distance from B to C,[5](ii) AĈB to the nearest degree,[3](iii) the bearing of C from B.[4]

	э Т		Answer the whole of this question on a sivet of graph pape	er
12		The ve	ertices of \triangle PQR are P($3; 1$), Q(4; 1) and R(4; 3).	
		(a)	Taking 2 cm to represent one unit on both axes, draw the x and y axes for $-3 \le x \le 5$ and $-6 \le y \le 5$. Draw and label \triangle PQR.	[1]
	•	. (b)	A certain transformation maps Δ PQR onto Δ P ₁ Q ₁ R ₁ where P ₁ (-2; -3), Q ₁ (-1; -3) and R ₁ (-1; -1).	
			(i) Draw and label $\Delta P_1 Q_1 R_1$.	
			(ii) Describe completely the single transformation which maps Δ PQR onto Δ P ₁ Q ₁ R ₁ .	[3]
		(c)	$\Delta P_2 Q_2 R_2$ is the image of ΔPQR under a reflection in the line $y = x$. Draw and label $\Delta P_2 Q_2 R_2$.	[3]
		(d)	Δ PQR is enlarged with centre (0; 1) and scale factor $-\frac{1}{2}$ onto Δ P ₃ Q ₃ R ₃ .	
			Draw and label $\Delta P_3 Q_3 R_3$.	[3]
		(e)	A stretch represented by the matrix $\begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}$ maps Δ PQR onto Δ P ₄ Q ₄ R ₄ .	
			Draw and label $\Delta P_4 Q_4 R_4$.	[2]

×,

•

3

127

		Answer the whole of this question on a sheet of graph paper.	٢
11	A b of la	uilder wishes to build houses and flats on 6 000 m^2 plot and.	
	(a)	The City Council insists that there must be more than 6 houses and that there must be more flats than houses.	5 <u></u>
•		Taking x to represent the number of houses and y to represent the number of flats, write down two inequalities, other than x > 0 and $y > 0$, which satisfy these conditions.	[2]
	(b)	The builder allows 300 m ² for each flat and 400 m ² for each house. Write down another inequality which satisfies this condition and show that it reduces to $4x + 3y \le 60$.	[1]
	(c)	The point (x; y) represents x houses and y flats. Using a scale of 2 cm to represent 5 units on both axes, draw the x and y axes for $0 \le x \le 20$ and $0 \le y \le 20$.	
		Construct and show by shading the unwanted regions, the region in which $(x; y)$ must lie.	[5]
	(d)	Use your graph to find	· [4]
		(i) the maximum number of flats that can be built,	
		(ii) the maximum number of houses that can be built,	
		(iii) the values of x and y which give the maximum number of dwelling units.	[4]

4

[2]

[1]

٤